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INTRODUCTION

This special issue of Cognitive Neuropsychology showcases four careful and
detailedcase studies. All four convergeon a common conclusion: Autonomous
spelling representations may affect behaviour associated with literacy. By
inference, automotous spelling representations must be included in a proper
account of intact reading and writing. The following performance profiles
motivate this conclusion.

PS, a� patient described in� Hanley and McDonnell� (this issue), produces� the
correctwritten response when presented with the picture of aBEAR, but cannot
produce the correct spoken name of the picture. Generally, PS had great
difficulty with tasks that required spoken responses relative to tasks that
allowedwritten responses. Similarly,his performancewas betterwhen hecould
point at the correct alternative, as in matching a picture with a written word.
His difficulty with spoken responses is due to a general deficit in phonology.
For� example, he is sometimes unable to produce the sound-alike alternative of
ahomophonic word (althoughmosterrors in this and other tasks areconstrained
by the spelling and phonology of the correct responses). A similar case is
described by Shelton and Weinrich (this issue). The patient EA’s picture
naming was better when the task allowed a written response than when it
required a spoken response. However, EA had great difficulty writing words
to dictation, and was essentially incapable of writing nonwords to dictation. As
in the previous case, EA performs poorly� on many� tasks that� require� a� spoken
response, but� unlike the previous case,� EA� can� correctly� repeat� spoken� words.

The patients PW (Rapp, Benzing, & Caramazza, this issue) and WMA
(Miceli,� � Benvegnù,� � Capasso, & Caramazza, this issue),� � produced overall
profiles that were similar to each other, but different from the previous two
patients. Both PW and WMA were better at reading words aloud than atwriting
words to dictation, anasymmetry that is also found in intactreading and writing.
Their overall picture naming was also better when the task allowed spoken
responses compared to written responses. However, like PS and EA, both
patients occasionally produced a correct written response when they did not
produce a correct spoken response. This occasional pattern is the key dissocia-
tion. Consider WMA, for example. When asked to name a picture, WMA may
provide one name if the response is spoken and a different name if the response
is written. Two different responses to the same picture! Sometimes the correct
response is the written response, sometimes it is the spoken response, and
sometimes neither is correct.

Each of the previous patients produces a dissociation between written
responses and spoken� � responses.� � A� � traditional logic� � licenses� � a formulaic
interpretation of dissociations. For example, writing one name and saying a
different name to the same picture indicates that the separate responses have
separate causal origins. The causal basis of a spoken name is a phonologic
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representation. By implication, if phonologic representations affect the written
response, then the written response should be the same as the spoken response.
Consequently, when the written name diverges from the spoken name it cannot
have originated in phonology. And yet a written response is produced, which
implies that some intact representation is still present, perhaps an orthographic
representation. Thus, by default, we infer the presence of spelling repre-
sentations that are independent of phonologic representations. This inference
is then extended backward in time. We projectback in time to before these men
had brain damage and infer that the same orthographic representations were
autonomous in� an� intact specialised reading� (writing) process.

We were invited to describe a different perspective on the previous patients’
data. Our account is not more correct than those offered in the target articles. The
framework that we work within cannot be discriminated from traditional compu-
tational models of cognitive� performance on the basis of correspondence to data
(see Stone & Van Orden, 1993, 1994). Instead, the value of our account derives
from two simple propositions: Things can look a bit different from a different
perspective, and multiple perspectives on phenomena may yield more general
understandings of those phenomena.

The difference� in perspective is� fundamental.� To understand why, we must
back up the traditional logic and explore its root assumptions—i.e. how it is
that� one infers cognitive structures from observed behaviour.� Next� we� discuss
these� root� assumptions of� the standard� practice of cognitive neuropsychology.
Past that point, we briefly review contemporary hypotheses concerning the
neurological basis of behaviour. Our goal in that review is to motivate an
alternative neurobiological metaphor� that� does not� entail� the� root� assumptions
of conventional cognitive neuropsychology. Following that, we describe a
simplerecurrentnetwork model of intactword perception that is congruentwith
contemporary neurobiology, and explain how this simple network begins to
account for key findings from the target articles. The simple model is strictly
grounded in� the theoretical basis� of the� neurobiological metaphor.� Finally,� we
review several recent� findings� that demonstrate� the utility of our approach.

THE EFFECT =  STRUCTURE ASSUMPTION

Standard computational models are usually laid out in a flow chart of processes
that transform one cognitive structure into another, as when a spelling repre-
sentation is transformed into a phonologic representation. Two of the target
articles include flow chart illustrations that track the cognitive structures of
reading and writing. In this section, we look closely at the theoretical method
that� licenses� the discovery� of these cognitive� structures.

Orthographic representations and other cognitive structures are induced
from reliable features of human behaviour. We observe specific patterns in
behaviours, but our goal is to induce general structures of a cognitive architec-
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ture. However, no guaranteed formula exists for this generalisation, because an
objective God’s-eye-view of cognition is not possible. Instead we rely on
plausible a priori assumptions, which we trust as though they were true. In
contemporary cognitive psychology, for example, we assume that careful
laboratory studies can reveal the presence of cognitive structures. Observed
performance in laboratory tasks (e.g. the overall variability in response times
or errors) is dividedinto component effects using linearstatistical methods (e.g.
ANOVA), and these component effects originate in causal components of
mind. Thus, behaviour is assumed to be the sum of strictly separable pieces,
plus some� noise.

For example, in a categorisation task, subjects miscategorise homophones
like ROWS as a flower, more often than control words like ROBS. This main
effect of homophone phonology is treated as a separate piece of overall
behaviour. The isolatedpieceis thought tooriginatein adistinct causal structure
of the cognitive architecture, namely, a representation of /roz/. The contrast
between the experimental condition(ROWS)and the control condition(ROBS)
reduces� � behaviour (categorisation errors)� � to pieces (effects) that, in� � turn,
indicate the pieces of mind (causal structures) in which the behaviour origi-
nates. In other words, the presence of an effect equals the presence of a
structure.

In cognitive psychology, this� logic usually ends as we left it in the previous
paragraph—a positive demonstration of a reliable effect ends in the inference
of a cognitive structure. However, it is just as important for this logic that the
opposite side of this inferenceis reliable,namely, the absence ofaneffect equals
the absence of a structure (Mackie,� 1974; Mill,� 1974). This� logical entailment
is not always made explicitby cognitive psychologists; it is more prominent in
neuropsychology. Cognitive neuropsychologists must infer the nature of cog-
nition prior to brain damage from the shape of behaviour after brain damage.
They take careful note of the missing pieces of behaviour and use these
observations to reconstruct the previously intact system. This is the basis for
the� standard dissociation logic of� cognitive� neuropsychology.

When the patient PW fails to name a picture of a PEAR correctly (Rapp et
al., this issue), his error deviates from the response that would be expectedfrom
intact naming. Apparently, a causal structure that would be present in intact
naming is absent in PW. The standard dissociation logic licenses the inference
that a particular causal structure is missing and that this causal structure would
have had isolable effects in the intact architecture. The failure to produce the
spoken word pear thus indicates the absenceof output phonology or someother
linking structure in a causal chain with output phonology. All discussion in the
target articles concerns precisely which structures are absent from a patient’s
behaviour. Cognitive neuropsychologists must always inferwhich or whatkind
of cognitive structures were present, prior to a lesion, from behaviour’s missing
pieces after the lesion (Patterson, 1981). Thus, they require a reliable basis to
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infer that the absence of an effect equals the absence of a structure. We refer
to the presence and absence sides of this inference togetheras effect = structure
(Van Orden, Holdend,� Podgornik,� & Aitchison, submitted; cf.� Lakoff,� 1987).

Assuming that effect = structure, the case studies described in the target
articles supply compelling evidence that the complex writing and naming
behaviour of these patients may be reduced to classes of behaviour or functions
(e.g. writing versus naming), and that these functions may be reduced further
to� more elementary� causal structures� (e.g.� orthographic and� phonologic repre-
sentations). Thus behaviour originates in isolable cognitive structures or single
causes). Single causes entail the familiar notion of “domino causality.” Push
the first domino in a chain of standing dominos and each will fall in its turn.
The input to this causal chain, a shoveon the firstdomino, is linkedto the output,
the force of the first domino as it falls. In turn, this output becomes the input to
the second domino, and so on, for each trailing domino down the chain. It is
this� notion of� causality� that is assumed in flow� charts� of cognition. A stimulus
input is linked by causal rules through a hierarchical chain of representations,
and the final output of this causal chain is the observed datum in a laboratory
task.

Now comes the tricky part. Given that we may only observe the final output
datum, how do we get inside this causal chain to discover its components? The
solution is to choose tasks and manipulations that differ from each other by the
causal equivalent of one domino (or one branch off a forked chain of dominos).
The extensive test batteries in the target articles are designed for exactly this
purpose. The problem that arises, however, is how to decide which tasks differ by
exactly one single cause, or by one branch of single causes. One requires objective
knowledge of� how tasks are� accomplished� to� know reliably which� or� how many
components eachtaskentails. Thus, we facean inescapableproblem of circularity.
Ourgoal is to inducegeneral cognitivecomponents entailedina specific task from
observedbehaviour, butthemethodby whichweinducethesecomponents requires
reliable a priori knowledge of the self-same cognitive components.

No theoretical approachescapes this problem. Every actof induction derives
from a set of a priori assumptions, and no act of induction can validate the
assumptions from which it derives (cf. Duhem, 1954; Quine, 1961). No matter
how compelling the apparent confirmation of single causes, we must resist
accepting this confirmation as conclusive. Objective knowledge of single
causes is required, a priori, to induce single causes reliably from observed
behaviour. Consequently, the successful induction of single causes cannot be
turned around to validate the root assumption. The simple danger here is that
scientists may be seduced by their own success. The danger of this seduction
is complacency, by which we mean the exclusion of other possibilities. The
history of science is littered with previously successful paradigms that, in their
time,� were practised to� the� exclusion� of other possibilities. With respect to� the
target articles, the conclusion that the observed pattern of dissociations dem-
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onstrates autonomous or independent representations (single causes) simply
affirms the inevitable consequent of assuming there were autonomous repre-
sentations in the first� place (Shallice,� 1988;� Van Orden,� Pennington,� & Stone,
submitted).

To this point, we havenotquestioned the utility of continuing in the standard
practice of cognitive neuropsychology. We merely suggest that it is wise to
maintain a sceptical stance with respect to a priori assumptions such as effect
= structure.

NEUROBIOLOGY AND BEHAVIOUR

So why are we so concerned with a version of causality that, on the surface,
seems so plausible?Afterall, causality,atour natural scaleof experience,seems
to agree with this intuition—dominos do knock each other down. Although
intuitive causality may serve us in ordinary circumstances, it may nevertheless
distort our view of cognitive systems. By comparison, many other areas of
contemporary science have been reframed by taking an alternative perspective
that does not simply entail single causes (e.g. see Cohen & Stuart, 1994;
Freeman, 1995; Goodwin, 1994). This alternative also invokes a reciprocal
form of causality in which every part of a system is always present in each
behaviour of that system.� Each of these parts continuously� affects every� other
part, to the point that their independent contributions cannot be sorted out in
the behaviour of the whole. Most important, this perspective has usefully been
applied to neuroscience, which is� � pertinent to our� � present concerns. The
educated guesses that we make concerning brain damage are informed by our
knowledge� of� how brains� work� in the� first place. We� will illustrate� this notion
of reciprocal causality by describing contemporary hypotheses concerning the
neurobiological� basis of behaviour.

At one time, Hubel and Wiesel’s classic experiments seemed to provide
a reasonable basis in neurobiology for single causes. They demonstrated
reliable correlations between stimulus events and individual neuronal activ-
ity� (Hubel & Wiesel,� 1962,� 1965, 1968).� Flow-chart� theories often� extrapo-
late from Hubel and Wiesel’s findings. “Feature detectors” are extended
metaphorically to cognitive� � systems where they� � become hierarchies of
representations. In perception, hierarchies of stimulus features, and combi-
nations of features, culminate in explicit representations of whole stimulus
forms (“grandmother cells”). This qualitatively linear scheme assumes a
causal chain between real-world objects, their stimulus forms, and their
consequent representations. Access to representations may depend on
weakly nonlinear mechanisms such as thresholds, but they are laid out in a
linear chain of single causes from proximal stimulus to intermediate repre-
sentations to observed behaviour.
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The previous causal chain was composed of isolable representations that
correspond to behaviourally meaningful information. In its simplest form, this
metaphor implies representations with binary states analogous to neural detec-
tors that are either above or below� their thresholds (alternatively, a continuous
change� in neural response amplitude eventually yields a discontinuous change
in representation). Recent findings, however, suggest that neural activity un-
dergoes a more complex qualitative change than crossing a threshold. This
qualitative change� entails the� reciprocal� causality that we mentioned� earlier.

Presently, behaviour is thought to originate in neural activity that self-
organises through recurrent feedback into interdependent, context-sensitive,
dynamic patterns. Observable behaviour derives from complex coordinated
activity among populations of sensory and motor neurons (Bressler, Coppola,
& Nakamura, 1993; Freeman, 1991a, 1991b, 1995; Singer, 1993; Skarda &
Freeman, 1987; von der Malsburg & Schneider, 1986). Although, initially, a
stimulus pattern may activate specific neural ensembles (Livingstone & Hubel,
1988), this local activation is subsequently transformed into a global pattern as
the system self-organises in recurrent feedback dynamics (Freeman, 1995;
Skarda & Freeman, 1987). Input conditions of local activationbecomecomplex
oscillating patterns in which the character of “input” activity is a strongly
nonlinear function of “output” activity. These complex patterns are not strictly
tied to the local tissue that serves as their excitable medium. Global patterns of
neural activation are related to neurons in (very) roughly the same way that
global patterns of ocean waves are� related to water molecules. (See� Goodwin,
1994, for more precise but less mundane analogies.) Nevertheless, each global
pattern maintains an identifiable but highly context-sensitive profile in the
amplitude� “waves”� of neural activity.

We may find utility in the contemporary neurobiological metaphor for
understanding cognitive performance. However, we must accommodate the
nonlinear qualitative transformation of sensory and motor activation into
subsequent, behaviourally meaningful, sensorimotor dynamics. By implica-
tion, the performance of cognitive systems is not reduced to local chains of
independent feature hierarchies; behaviour emerges in coordinated activity
among interdependent sensorimotor ensembles. This strongly nonlinear, quali-
tative transformation leaves no practical possibility of reducing cognitive
performance to singularly causal neural ensembles, nor even singularly causal
component oscillations. Within this metaphor, sensory and motor activationare
combined and transformed as their dynamic trajectory traces a path of metas-
table states.

Metastability implies that a nervous system neversettles fully on a dominant
percept or action (attractor). In a sense, this means that the system is always
entertaining alternative possibilities, albeit only one alternative may be ex-
pressed in perception and action. Consequently this system is always slightly
unstable. This instability makes it more flexible. By (very) rough analogy, a
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person who always has an alternative “plan B,” or plans B, C, and D, at every
juncture, would appear more flexible (metastable) than a single-minded person
who cannot deviate from plan A. Crucially, however, if metastableneural states
are the basis of observable behaviour, then no basis exists in observable
behaviour for inducing causal chains of representations. The metastable basis
of behaviour is antithetical to discovering implacable single causes that run
from input� to� output.

In such strongly nonlinear complex systems, it� � is impossible to� � track
backwards from observable, contextually embedded, stimulus-response, attrac-
tor states to initial conditions. Consequently, it is not possible to discover a
causally distinct“input” component. Performance with few degrees of freedom
emerges in patterns of sensorimotor activity with moderate degrees of freedom,
which originate in prior patterns of sensory and motor activation with vast
degrees of freedom. Each reduction in the degrees of freedom is a loss of
information about previous states of the system. The loss of information creates
an� impenetrable barrier of uncertainty (Abraham &� Shaw, 1992; Prigogine &
Stengers, 1984). This barrierblocks any possibility of discovering linear causal
chains running between proximal� � stimuli and performance (Uttal, 1990).
Rather, “stimulus” and “response” are better viewed as an irreducible whole
that self-organises through recurrent feedback (Freeman, 1995; Van Orden &
Goldinger, 1994, 1996; Varela, Thompson, & Rosch, 1991). This self-organ-
ising gestalt allows fluid continuity between action and perception, and organ-
ism and environment (Gibson, 1986; Turvey & Carello, 1981). Coincidentally,
the striking competence of behaviour is fluid accommodation of continuous
changes in the environment (Gibbs & Van Orden, submitted; Stone & Van
Orden,� 1993;� Thelen & Smith,� 1994;� Van Orden,� Holden, et� al., submitted).

Contemporary models of nervous systems are specific applications of
mathematical dynamic systems theory, the most general formal framework
available to scientists. Dynamic systems theory concerns how behaviour of
complex systems changes over time. This mathematical theory promises some-
day to provide a common metalanguage for diverse areas of science (Abraham
& Shaw, 1992; Haken, 1984). Today, it provides new theoretical and methodo-
logical tools for scientific enquiry.� This framework is so general� as to include
previous flow-chart models as a subset of possibilities. Giunti (1995)describes
how computational models (Turing machines)form anarrow subsetof dynamic
systems. Our� discussion requires a related point: The products of linear reduc-
tive analyses (reliable intercorrelations between independent and dependent
variables)� � may always be redescribed (“regraphed”) to coincide with the
trajectory of a dynamic system. Consequently, behaviour thought to be char-
acteristic of linear systems may always be reframed in terms of more general
nonlinear systems. The simple point here is that dynamic systems theory is
sufficient to account for any behavioural phenomenon that was previously
formalised in a flow-chart model. What remains to be determined is whether it
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will have utility over and above the traditional approach (Carello, Turvey, &
Lukatela, 1992).

In the next section, we describe a model system in which behaviour is
organised by recurrent feedback. Our model system is not reducible to a neural
account, although it is strictly in line with the contemporary metaphor. As
Thelenand Smith (1994, p. 130)note: “Whilemechanismsof changeformental
processes most certainly do involve changes in neurotransmission, satisfactory
explanations need not reside only at this level. Nonetheless .� . . explanation at
every level must be consistent and ultimately reconcilable . .� . the dynamics of
behavioural phenomena must be consistent with the dynamics of the neural
phenomena.”

Wepropose thatmany behavioural and neural phenomenamay be reconciled
with respect to a common mathematical basis, as found in dynamic systems
theory. Respective choices for models within this framework, however, are
mostly determinedby the observedcomplexity of the behaviour tobemodelled.
For example, we model performance in simple reading tasks. Simple reading
tasks provide punctate data measured at a single point� in time� (response� time)
and scored for accuracy. Thus, we may begin with models appropriate for
“fixed-point” data—i.e. models that converge on point attractors. The network
thatwe describe is not superficially isomorphic toa neurobiological model (e.g.
Freeman, 1987). At most, it traces a low-dimensional “shadow” of the vastly
higher dimensional description of� nervous systems.

Our goal is to illustratehow the behavioural trajectory of a fully interdepend-
ent dynamic� � system may simulate� � the behaviour that� � is� � characteristic of
dissociations. In the service of this goal (Freeman, 1995, p. 53): “ .� . . we move
conceptually from the local neural network and its clearly defined properties
out to the limits of its utility, multiply the network to infinity, and then awaken
into a new local network in which the infinities of components are collapsed
into the emergent elements at the next higher hierarchical level.” Our simple
model mimics intact behaviour and the behaviour characteristic of dissocia-
tions. Eventually, we explain how this simple model could fail to name a
“picture” of a pear and yet produce a “written” response, or produce different
“spoken” and written responses� to the� same� picture.

PHONOLOGIC MEDIATION IN READING
AND SPELLING

The emphasis in much reading research is on the perception of single words,
as this is the most predictive aspect of reading skill. A poor aptitude for word
perception severely limits the development of skilled reading and reading
comprehension (Pennington, 1991; Perfetti, 1985). As noted in the target
articles, a perennial question in such research is whether a word’s phonology
always mediates visual word perception.� For reading, a� recent� proliferation of
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phonology effects in laboratory paradigms suggests that phonology’s role is
fundamental (for overviews, see Berent & Perfetti, 1995; Carello et al., 1992;
Frost, submitted; Katz & Frost, 1992; Perfetti, Zhang, & Berent, 1992; Van
Orden et al., 1990). For writing, systematic misspellings, like substituting
ROZEor ROWS for ROSE, are common (for an overview, see Bosman & Van
Orden, in press). Phonologic constraints� are also� apparent in patients’ spelling
performance,� as� when a patient spells� YACHT as YOT (Hatfield &� Patterson,
1983). Moreover, patients who exhibit substantially disrupted phonology al-
most always� also exhibit bizarre� reading performance.

Phonology effects are found with readers and writers spanning the full rangeof
reading skill. They are found across languages (in both alphabetic and nonalpha-
betic writing systems), and across laboratory tasks. All thesephenomena converge
on the straightforward conclusion that phonology is fundamental to intact reading
and spelling. Why is phonology so involved in reading or spelling? In the next
section, we describe a recurrent network model of word perception and spelling
that explains phonology’s fundamental role. The description pertains to a very
simple model that has been implemented (Farrar & Van Orden, 1994), but the
principled basis of our account is not tied to the specifics of our simulation (see
Stone & Van Orden, 1994; Van Orden & Goldinger, 1994).

We do not propose a connectionist network that is causally in between a
stimulus and a response. The nodes of our model cannot be localised within a
mind or brain separate from its environment (see also Saltzman, 1995). At first
this may sound paradoxical, but recurrent dynamics are plausibly described as
occurring directly, between an organism and its� � environment� � (Turvey� � &
Carello, 1981; Van� Orden� &� Goldinger, 1994). Perhaps this� theoretical entail-
ment� � will� � appear� � less paradoxical if� � we� � take into� � account the pragmatic
entailments of behavioural research. Behavioural data cannot apportion effects
between environments and organisms becausebehaviouralways occurs at their
interface. Consequently, with respect to behavioural data, there is no reliable
way to determine where the environment leaves off and the organism begins
(Shanon, 1993; Varelaet al., 1991).Organismand environmentarealways both
“present” in every instance of behaviour. Nevertheless, to make our story more
concrete� we tell� it� with respect� to� a� fictitious� nervous system.

A SIMPLE MODEL

Imagine a� fictitious nervous system that� perceives printed words.� This system
consists of three families of neurons: letter neurons, phoneme neurons, and
semantic neurons.� Every neuron in each family is (potentially) bidirectionally
connected to every neuron of the other two families. Bidirectional connectivity
means that if a feedforward connection exists from neuron “x” to neuron “y,”
there is also a feedback connection from neuron “y” to neuron “x.” Now,
imagine a specific pattern of activation across the letter neurons, due to the
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presence of a printed word. This letter pattern feeds activation forward through
a matrix of “synaptic” connections, creating patterns of activation across
phoneme and semantic neurons. The phoneme and semantic neurons, in turn,
feed activation back through a top-down matrix of connections, transforming
their patterns back into letter patterns. Whenever the feedback patterns match
the original letter pattern, top-down activationconserves bottom-up activation.
Consequently, the “matched” letter neurons conserve their capacity to reacti-
vate matching phoneme and semantic neurons that, in turn, reactivate the letter
neurons, and so on. This feedback cycle is temporarily stable, resulting in a
coherent� dynamic� whole—a resonance.

This neural network is only for exposition. It is helpful to consider word
perception in terms of artificial neural activity, but the more precise analogy
between nervous� systems and cognitive systems is a hypothetical trajectory of
sensorimotor dynamics (alternatively, a perception-action trajectory) that is
correlated� � with cognitive performance. No� � claim� � is made concerning the
“correct” architecture (see Stone & Van Orden, 1994; Van Orden & Goldinger,
1994; Van Orden et al, 1990; Van Orden, Holden, et al., submitted; Van Orden,
Pennington, et al., submitted). Thus, with respect to the model’s nodes, we are
free to discuss word perception in cognitive system’s terms. Figure 1 illustrates
cognitive macrodynamics of word perception (Van Orden & Goldinger, 1994,
1996) and spelling (Bosman & Van Orden, in press), and Fig. 2 illustrates
microdynamics.

Figure 1 portrays a recurrent network with three families of fully interde-
pendent nodes (letter nodes, phoneme nodes, and semantic nodes). On average,
the connections between node families differ in strength; the rank order of

FIG. 1. Macrodynamics of reading and spelling performance emergent in a recurrent network. The
boldness of the arrows indicates the overall strength of the relations between letter, phoneme, and
semantic node families (see text).
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overall strength is illustrated by the relative boldness of arrows in the figure.
In alphabetic languages, letters and phonemes correlate quite strongly. For
example, the letter B is almost always pronounced as [b], and the phoneme [b]
is always written with a B. Correlations between phonemes and semantic
features, or letters and semantic features, are far weaker than correlations
between letters and phonemes. Knowing that a word begins with the letter B
indicates almost nothing about its meaning, but much about its� initial pronun-
ciation.

Notice also that phoneme-semantic relations are depicted as stronger corre-
lations than letter-semantic relations, primarily because we speak before and
more often than we read. Once in place, this asymmetry is self-perpetuating.
Reading strengthens phoneme-semantic connections, becausephonology func-
tions in every� instance� of printed word� perception.� Thus, even the exceptional
condition of people who read more than they speak would support phoneme-
semantic connections� that are at least as strong as letter-semantic connections.
Also, if a coherent positive feedback loop forms between phoneme and seman-
tic nodes, before the feedback loop between letter and semantic nodes, then
printed or spoken discourse may� proceed without resolving the� feedback� loop
between letter and semantic nodes. The absence of resonance in the latter
feedback loop may� preclude strengthening the� connections between� letter and
semantic nodes (Grossberg &� � Stone, 1986). Thus, at this macro-level of
description, node families differ in overall strength of relations with other node
families. These differences in overall correlational structure are illustrated in
the� relative� boldness of the� arrows in� Fig. 1.

The� strong bidirectional connections� between letter and phoneme nodes, as
compared to those with semantic nodes, causes the letter-phoneme dynamic to
cohere (resonate)� before all others. This� is the phonologic� coherence� hypothe-
sis. The relatively consistent bidirectional covariance between letters (form)
and phonemes (function) explains how phonology comes to be so fundamental
in reading and spelling. Stated differently, it explains why sound-alike words
(ROSEand ROWS) may be confused in reading (Van Orden, 1987); itexplains
why the majority of spelling errors (ROZEinsteadof ROSE)arephonologically
acceptable; and it explains why patients’ spoken and written errors often
resemble the spelling and pronunciations of the correct response that was not
produced. (Van Orden & Goldinger, 1994, 1996; Van Orden, Pennington, et
al.,� submitted,� describe� various other phenomena that� derive from the� bidirec-
tional covariance� between spelling� and phonology.)

In a model analogous to Fig. 1, presentation of a printed word activates letter
nodes, which, in turn, activate� phoneme and� semantic nodes. Following initial
activation, recurrent feedback begins among all these node families. Similarly,
presentationof a spoken word activates phonemenodes, which, in turn, activate
semantic and letter nodes (and “picture naming” might be simulated with
activation of semantic nodes which, in turn, activate phoneme and letter nodes,
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cf. Dell, Schwartz, Martin, Saffran, & Gagnon, in press). In all these cases,
initial activationleads to recurrent feedbackamong all node families. However,
the strongest recurrent dynamic is between letter and phoneme nodes, which
creates the common basis of reading and spelling. The strength of a recurrent
dynamic is a function of self-consistency—the capacity of a node or a family
of nodes to conserve their own activation (Smolensky, 1986; Van Orden et al.,
1990). Nodes conserve their activation when they “send” it to other nodes that
“return” it in relatively exclusive recurrent feedback. This capacity to conserve
activation derives from relatively consistent bidirectional covariance between
nodes or node families—i.e. a history of structural coupling (cf. Varela et al.,
1991). The bidirectional relation between letter and phoneme nodes is more
self-consistent than other pairings of node families. Consequently, letter-
phoneme dynamics supply the strongestand most generally reliable constraints
on� the model’s� performance.

Notice the difference between the description of phonologic mediation in
the� target� articles and� the� phonologic� coherence� hypothesis.� Linear� flow-chart
models use the term phonologic mediation to refer to a causally intermediate
phonologic representation that is activated by spelling representations and, in
turn, activates semantic representations (for example)1. This is why phonologic

1
My (Van Orden’s) view of phonologic mediation has changed in the last decade, as I have

learned more of mathematical dynamic systems theory. I have moved from a representational
connectionistview (e.g. Van Orden,1987)to a “nonrepresentational”cognitivesystems view (e.g.
Van Orden & Goldinger, 1994). However, I do not recall proposing the straw man account that
is attributed to me in the target articles. A more careful reading of my cited articles would find
the� following quotes:

The extent to which phonology affects performance .� . . is underscored by the simple
verification model’s relatively comprehensive account of [these] results .� .� . even though
it lackeda mechanism of direct access. This is not to say that I deny the possibility of direct
access (Van� Orden,� 1987,� p. 192).

A mechanism of covariant learning can also accomplishdirect access in the same way that
it accomplishes phonologicalcoding .� .� . any linguistic features that frequently covary with
orthographic features will become associated. The consequence . .� . for any subsequent
instance of lexical� coding will be� that, initially, a representation� of� the� spelling of� a word
will activatemoststrongly those linguistic features (i.e. semantic, syntactic, andphonologi-
cal features) that covary to the highest� degree with its orthographic� features (Van Orden,
1987,� p.� 194).

This is not to say that we deny the possibility of direct bottom-up activation of lexical
features by orthographic features. Rather, it may be useful to abandon the notion of
separate, independentroutes of lexical access. Apotential alternative.� . . is a connectionist
mechanism .� . . that . .� . comes to reflect the covariance between all linguistic features
(syntactic, semantic, andphonological)andorthographicfeatures in its associativeweights
. .� . � � (Van Orden,� Johnston,� & Hale,� 1988, p.� 382).

Continued overleaf
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mediation has appeared inefficient and counterintuitive (Van Orden & Goldin-
ger,� 1994). Why should� information� processing traverse� the same psychologi-
cal distance in two steps (step one: orthography to phonology; step two:
phonology to semantics), rather� than one step (orthography to semantics)?� By
contrast, the phonologic coherence hypothesis implies that phonology’s medi-
ating effect in� reading� and writing� is economical and efficient.� Self-consistent
feedbackfrom phonology rapidly organises the system, and strongly constrains
local competitions that would organise the visual stimulus. Subsequently, a
coherent visual-phonologic dynamic “mediates” competitions among alterna-
tive global interpretations—their chances for survival are enhanced if they
conform to extant, visual-phonologic dynamics. Phonologic “mediation” is
inescapable in the simple model, due to the powerfully self-consistent relation
between� letter nodes and phoneme� nodes.

Figure 2 illustrates microdynamics. Now we zoom in on the connectivity
between letter and phoneme nodes (and ignore, for now, phoneme-semantic
and letter-semantic connectivity). In Fig. 2a, reading the printed word HI
includes activationof letter nodes H1 and I2, which activate the phoneme nodes
[h1] and [aI

2], but also competing correlatednodes such as [I2] (as in [hIt]) which
must be inhibited. (The subscripts refer to the positions of the letters or
phonemes in words.) Figure 2b shows how, in turn, phoneme nodes feed
activationback to letter nodes (illustrated for the phoneme nodes [h1] and [aI

2]).
The phoneme node [aI

2] activates the correct letter nodes H1 and I2 and also
competing letter nodes, for example, the letter node Y2 as in MY or BY. Thus,
early patterns of activation are loosely structured. They include the activation
of correct, but also many incorrect, candidates for resonance. This is due to
multistability, a defining characteristic of dynamic systems. In our simple
model, the dynamics from this point select a combination of nodes through
cooperative-competitive dynamics.

Reliable performance emerges if the overall bidirectional configuration of
connections favours mutual activation between the letter nodes H1 and I2 and
the phonemenodes [h1] and [aI

2]. This advantagegrows over time as the “strong
grow stronger” and the “weak grow weaker” (cf. McClelland & Rumelhart,

Name (phonologic) codes have a .� . . processing advantageover other lexical� codes. This
advantage is� � not, however, an advantage in� � the� � relative� � time� � course of� � phonologic
activation; phonologic codes are activated in parallel with other linguistic codes. Rather,
relatively invariant phonologic codes are relatively stable pockets of lexical activity, and
other� lexical codes� congeal around this� relative� stability� (Van Orden et� al., 1990,� p.� 513).

Once again, we emphasize that it is not a difference in the time course of initial activation
that distinguishes phonologic codes: All lexical codes are activated in parallel. Instead it
is the difference in coherence times that constrains processing (Van Orden et al., 1990,
p.� 514).
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1981). This is illustrated in Fig. 2c, which combines the flow of activation from
letter nodes to phoneme nodes and from phoneme nodes back to letter nodes,
as assumed in a recurrent network. Presentation of the spoken word /haI/ to the
network (as in a spelling task) leads to a similar dynamic between phoneme
and letter nodes. Thus, activation initiated in phoneme nodes may generate a
coherent� pattern of activity� across� letter nodes.

THE DISSOCIATION BETWEEN READING AND
SPELLING

Anyone who writes in English will experience occasional doubts about how to
spell a word, but we almost never forget how a word should be read aloud. This

FIG. 2. A simplified illustration of microdynamics that “read aloud” the word HI. (a) Presented with
HI, activation feeds forward from letter nodes to phoneme nodes. (b) In turn, phoneme nodes feed
activation back to letter nodes. (c) A resonance that emerges between letter and phoneme nodes
corresponding to HI. To reduce the number of lines in the figure, bidirectional connections are depicted
with single double-headed arrows.
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dissociation of intact naming from intact spelling is evident for a variety of
languages, at all levels of skill (Bosman & Van Orden, in press). This dissocia-
tion is� also present,� although exaggerated, in� the performance of PW (Rapp et
al., this issue)and WMA (Micelli et al., this issue). Both these patients correctly
readaloudmany more words than they correctly spell in written picturenaming
or to dictation. We do not suggest that their spelling performance is not affected
by their lesions, just that this pattern respects the topology of intact naming and
spelling. The discussion of these patients in the targetarticles does not take into
account the topological properties of intact performance, but we eventually
discuss why this concern� is� more salient from our perspective.

Our account explains why people find spelling more difficult than reading
aloud. This dissociation illustrates one basis for dissociations in a “lesioned”
recurrent network. The model may behave one way if activation of letter nodes
drives a naming response, but differently if activationof phoneme nodes drives
a spelling response. This dissociation may be described simply with respect to
the previous illustrations of microdynamics (letter-phoneme dynamics), and
macrodynamics (dynamics among node families).

Returning to� Fig. 2,� reading the� word HI not� only activates phoneme� nodes
[h1] and [aI

2], and the letter nodes H1 and I2, but also all possible pronunciations
of H1 and I2 and all possible spellings of [h1] and [aI

2]. Again, this is due to
multistability. The� � same stimulus supports� � multiple� � percepts and actions.
Multistability implies that reading a� word correctly� must include inhibition of
incorrectphoneme nodes, and spelling a word correctly must include inhibition
of incorrect letter nodes.� In the� case of reading,� the� letters are� presented to� the
model (or reader). As a consequence, phoneme ® letter ambiguity is highly
unlikely to� result� in� full activation of� incorrect letter nodes,� because persistent
and stable environmental constraints (visible letters) accelerate correct feed-
back loops with phoneme and semantic nodes (as illustrated by bold arrows in
Fig 2c). In the case of spelling, however, one mustgeneratethis resonantpattern
from phonologic and semantic activation alone. In this case, the environment
does not� include� explicit support for correct� letter� nodes.

Differences in environmental constraints strongly affect performance. For
example, a patient may be much better at repeating auditorally presented
pseudowords—i.e. explicit environmental support for� � phonology—than at
reading pseudowords aloud—i.e. only implicit environmental support for pho-
nology (Funnell, 1983). Likewise, a patient may be much better at copying
printed words than at� writing to� dictation.� This point is also more salient from
a perspective that emphasises a history of covariance (structural coupling)
between environmental forms and their cognitive functions. From a traditional
view, the environment is equally relevant or irrelevant in both cases, because
it� must be represented symbolically.

The crux of spelling� � is that� � English orthography, generally, has� � more
possible spellings for any given word than possible readings, and this is true of
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most writing systems (e.g. Stone, Vanhoy, & Van Orden, in press; Ziegler,
Stone, & Jacobs, in press). Consider, for example, the multiple inconsistent
“spelling bodies” that may correspond to the “rime” [ ûrch], IRCH as in
BIRCH, ERCH as in PERCH, URCH as in LURCH, and EARCH as in
SEARCH. Stone et al. (in press) estimated that 31%of low-frequency English
one-syllable words are spelling ® phonology inconsistent (at the grain-size of
spelling-bodies� and rimes),� but� fully 72%are� phonology ® spelling� inconsis-
tent (at the same grain-size). This estimatewas corroborated in a larger sample,
including both low- and high-frequency one-syllable words. Again, 72%of all
spelling ® phonology consistent� words� were phonology ® spelling� inconsis-
tent. These linguistic analyses clearly indicate that phonology ® spelling
inconsistency is the rule for English (see alsoZiegler, Jacobs, & Stone, in press,
concerning French).

Although both reading and spelling are powerfully constrained by the strong
correlational structure� of� letter-phoneme� relations, the occasional inconsisten-
cies in these relations are resolved by different sources of constraint. Now, we
referagainto the illustrationof macrodynamics inFig. 1. When amodel “reads”
a low-frequency, spelling ® phonology inconsistent word such as PINT, the
more consistent letter-phoneme relation would rhyme with MINT (and HINT,
LINT, TINT).� Similarly,� the letter-phoneme� dynamic� would� yield� two correct
pronunciations for words like WIND (although it would typically favour the
more regular pronunciation, Kawamoto & Zemblidge, 1992). In both these
cases, relatively strong semantic-phoneme relations may supply sufficient
secondary constraints to encourage the appropriate letter-phoneme dynamic. In
the case of WIND, semantic constraints may also be due to context. In the
model, contextual and stimulus sources of semantic constraints contribute via
the relatively strong connections betweensemantic and phonemenodes. Highly
imageable or concrete words have stronger semantic correlations to letters and
phonemes, which promotes better intact and patient performance (cf. Plaut &
Shallice, 1993; Strain, Patterson, & Seidenberg, 1995). Also, added contextual
support for correct performance contributes directly through semantic connec-
tions to� activation� of letter� and phoneme� nodes.

In the case of spelling, a model must resolve the inverted patterns of
ambiguity in the phoneme-letter dynamic. To spell a low-frequency phonology
® spelling inconsistent word such as HEAP, the rime [ ip]’s correct spelling
would compete with a more strongly correlated incorrect spelling-body EEP
(as in DEEP, BEEP, KEEP, PEEP, SEEP, and WEEP). Additionally, the
phoneme-letter dynamic yields two correct spellings for homophones (e.g.
ROSE/ROWS). In either case, correct spelling must rely on relatively weak
semantic-letter constraints (as illustrated in Fig. 1) to activate the appropriate
letter nodes sufficiently—even contextual support is filtered through the weak
letter-semantic connections. This weaker support for spelling, compared to the
strong support for reading (i.e. phoneme-semantic constraints) is the “macro-
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basis” for the asymmetry between reading and spelling. Spelling is thus more
difficult than reading for two reasons: microdynamic phoneme ® letter rela-
tions aremore inconsistentthan letter® phonemerelations, andmacrodynamic
support for spelling (i.e. letter-semantic connections) is weaker than macrody-
namic� support for reading (i.e.� phoneme-semantic connections).

SIMULATED BRAIN DAMAGE

The previous section demonstrates the utility of our model for understanding
intact performance. In this section, we discuss how this approach may be
extended to patient data. Our focus will be limited to a few theoretically
important phenomena associated with acquired dyslexia, and a few key per-
formance phenomena from the target articles. Marshall and Newcombe’s
(1973) classic article described distinct syndromes of acquired dyslexia: sur-
face dyslexia and deep dyslexia. These syndromes are defined by characteristic
profiles of naming errors. For example, deep dyslexics sometimes produce
bizarre semantic errors (e.g. BUSH named as TREE), and surface dyslexics
sometimes produce regularisation errors (e.g. PINT named to rhyme with
MINT). Next, we describe how� to produce similar errors in “lesioned” models
that� previously produced patterns� of skilled naming performance.

Regularisation errors are� characteristic of� surface dyslexic� patients, occur-
ring when words such as PINT, with irregular pronunciations, are read aloud
incorrectly to rhyme with similar regularwords (e.g. MINT, HINT, and LINT).
Although skilled readers also make regularisation errors in speeded naming
tasks (Kawamoto & Zemblidge, 1992), surface dyslexic patients make many
more. Regularisation errors are symptoms of multistable dynamics in intact
naming. Multistability implies that multiple percepts and actions may arise to
the same stimulus. For example, intact dynamics that lead to a correct pronun-
ciation of PINT include the rhyme with MINT, which must be inhibited. The
rhyme with MINT is locally more self-consistent because it is favoured by
overall letter-phoneme covariance. In a model, the relatively late phoneme-
semantic resonance strengthens the correct� pronunciation of PINT and allows
it to inhibit the “regularisation error” (Van Orden & Goldinger, 1994). Thus,
regularisation errors in intact performance are much more likely when naming
is speeded using a deadline procedure, and when a phoneme-semantic reso-
nance is weaker as in low-frequency words. Also, regularisation errors in
patient performance are correlated with semantic deficits that may imply
reduced semantic constraints for inconsistent pronunciations (Patterson &
Hodges, 1992; Patterson, Marshall, & Coltheart, 1985; Warrington, 1975). In
a model, the reduced constraints from phoneme-semantic dynamics release the
more regular pronunciation from the inhibition, resulting in a regularisation
error.
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Semantic errors are characteristic of deep dyslexic patients, occurring when
words are read aloud incorrectly as semantically related words. For example,
the word BUSH might be read aloud incorrectly as TREE. Semantic errors are
also symptoms of multistable dynamics and releasefrom inhibition. In amodel,
activation of semantic nodes leads, in the next time step, to activation of all
letter and phoneme nodes which have previously covaried with any active
semantic node. This allows the surface features of a competitor, such as TREE,
to be activated by a semantically related stimulus word, such as BUSH. An
intact model is saved from semantic errors because the letter nodes of BUSH
are explicit in the environment and they are powerfully correlated with the
phoneme nodes of BUSH. Thus, BUSH’s letter-phoneme dynamic readily
inhibits the� surface� features� of TREE in� intact performance.

The separate occurrence of semantic and regularisation errors has been
incorrectly interpreted to be evidence against recurrent network models (see
Van Orden, Pennington, et al., submitted, for a review and counter-argument).
Farrar and Van Orden (1994) refuted this claim with an existence proof—i.e.
a recurrentnetwork model thatproduces these two error types. They began with
a network very similar in structure to the simple illustrations presented in this
commentary. Three families of nodes (see Fig. 1) were “taught” a sample of
English words using a Hebbian-type learning algorithm (10 learning trials each
for “high-frequency” words and 1 each for “low-frequency” words), until the
model produced patterns of naming performance similar to those of skilled
readers. The “naming response” was taken from the pattern of most active
phonemes and “naming time” was defined as the number of cycles required to
generate a coherent pattern of phonemes.) In particular,� the� model produced a
frequency × consistency interaction. Low-frequency inconsistent words such
as PINT were named more slowly than low-frequency consistent words such
as DUCK, whereas all high-frequency words were named quickly (see Waters
& Seidenberg, 1985).

To simulate the regularisation� error, they added noise to the intact network.
Noise was implemented as a uniform distribution of small increments of
positive or negative activation added in each cycle to the activation values of
randomly chosen nodes. The noise eroded the strength of phoneme-semantic
attractors. In� turn, this eroded the network’s capacity for� inhibiting regularisa-
tion errors. For example, instead of PINT’s correct phonemes, the network
produced activation on phoneme nodes that regularised PINT to rhyme with
MINT. Specifically, noise destabilised the weakest phoneme-semantic attrac-
tors, which released from inhibition the powerful local constraints of “regular”
letter-phoneme attractors. Because letter-phoneme dynamics primarily reflect
the strongest correlations between letters and phonemes, they are naturally
drawn� into regularisation errors.

Importantly, Farrar and Van Orden (1994) could have simulated regularisa-
tion errors in several ways. A “lesion” could be implemented by reducing
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top-down activation from semantic nodes to phonologic nodes (Patterson et al.,
in press; Plaut, McClelland, Seidenberg, & Patterson, 1996). Their more subtle
implementation added a uniform distribution of noise, which erodes the
model’s capacity to enter weakly self-consistent resonances (compare Lewen-
stein& Nowak, 1989). Alternatively, they could haveintroduced small changes
in randomly chosen connection strengths. Similarly, the locus of noise need not
be crucial. Bidirectional flow of activation means that noise introduced any-
where in the model spreads throughout the model in the nexttime step(although
noise reduction does occur due to remote local inhibition). Because weaker
“coarse-grain” phoneme-semantic relations yield less self-consistent dynamic
structures, they are more vulnerable. Performances that rely on similar coarse-
grain, visual-phoneme-semantic constraints include naming of irregularwords,
object and picture naming, and comprehension. These performances are typi-
cally� deficient in surface� dyslexia.

To simulatesemantic errors, Farrarand Van Orden(1994)further “lesioned”
the noisy network that previously produced regularisation errors. They set all
of the letter-phoneme connections atzero, effectively “cutting” the connections
(they could have cut fewer connections with the same effect; the minimum
proportion that would produce semantic errors is interdependent with other
modelling choices such as the amount of noise). Subsequently, the network
produced semantic errors. When presented with BUSH, the network produced
a relatively unstable pattern of activity across phoneme nodes corresponding
to TREE. Setting the letter-phoneme connections to zero creates a highly
unstable network, causing it to rely heavily on semantic-phoneme dynamics,
the most reliable remaining source of constraints. However, in the absence of
letter-phoneme constraints, semantic-phoneme dynamics are sometimes mis-
led into a semantic error, and the relatively weaker letter-semantic dynamics
cannot rescue the network from this error. Semantic errors are especially likely
when semantic nodes of one word (BUSH) are strongly correlated with pho-
neme� nodes� of a� different� word� (TREE)� (see also Plaut & Shallice,� 1993).

The Dissociation of Writing and Naming

So, how might we simulate dissociations of written and spoken responses in
picture naming? Farrar and Van Orden (1994) did not construct a model of
picture naming, but we can understand how such a model would behave by
thinking of picture naming as a dynamic initiated from semantic nodes to letter
and phoneme nodes. The crux of the present articles is that a dissociation
between written and spoken picture names forces the inference that intact
writing and naming include causally independentorthographic representations.
Thus, any lesioned model that mimics this dissociation, but does not entail
causally independentorthographic nodes, contradicts the basis of this inference.
In this regard, we point out that the previous simulation of semantic errors
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already exhibits adissociationof “written” letternode activationfrom “spoken”
phoneme� node� activation, as we describe� next.

Suppose that we presented “pictures” to a model that already produces
semantic errors. An artificial lesion has disconnected letter and phoneme nodes
and also generated a uniform distribution of noise. This results in a highly
unstable system with no direct constraints between phoneme and letter nodes
(however, they are still causally interdependent through indirect recurrent
connections). Such a system may generate the same written and spoken names
when� a complete, relatively familiar semantic pattern� resonates with phoneme
and letter nodes. Alternatively, if the semantic pattern that initiates dynamics
is incomplete then it may support different letter nodes and phoneme nodes.
This is especially likely if the history of semantic-phoneme covariance favours
a different response than the history of semantic-lettercovariance (compare the
previous dissociation of spelling and naming in intact performance). Of course,
ablating a portion of the phoneme nodes would further degrade explicitly
phonologic performance. (See Dell et al., in press, for additional modelling
choices.)

We have described how an overly-simple recurrent network can dissociate
written responses from spoken responses, but the intact version of this model
does not include autonomous spelling representations. Moreover, it would be
a mistake to imagine that the simple model is the only possible choice within
the cognitive systems framework, or that “falsification” of the simple model
impugnes our more general claims concerning causality. That reasoning would
ignore the strong and broad theoretical basis of this framework in mathematical
dynamic systems theory. Just as one may always construct a flow-chart model
of performance, one may also always construct a theoretically meaningful
recurrent network to mimic any performance profile of any complexity (Stone
& Van Orden, 1994). We have described a minimal model that was trained to
embody a subset of visual-phonologic-semantic covariant structure. Once
trained, that model’s behavioural trajectories suffice to mimic theoretically
important� intact� performance, and to� produce� dissociations when lesioned.

The Topology of Performance

Empirical constraints on the construction of cognitive systems models are
primarily derivedfrom generic patterns in behaviour(Abraham & Shaw, 1992).
This basis for rigorous qualitative analysis may be very useful for cognitive
neuropsychology, which deals mostly with qualitativeeffects. For example, we
have discussed generic predictions for intact naming and spelling that derive
from self-consistency betweenspelling, phonology, and meaning (e.g. Bosman
& Van Orden, in press; Van Orden & Goldinger, 1994). This performance
topology� may� be tested against the behaviour of patients. Table 1 summarises
the patients’ performance from the target articles on six key tasks. Macro- and
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micropatterns of self-consistency supply qualitative predictions for several
contrasts between tasks. The utility of this approach is illustrated using the
overall profiles of PW (Rapp et al., this issue) and WMA (Miceli et al., this
issue), so we will discuss theirprofiles first. Following that we discuss how this
approach might accommodate the less agreeable profiles of PS (Hanley &
McDonnell,� this issue)� and EA (Shelton & Weinrich,� this issue).

In Fig. 1, we described the macrodynamics of naming and spelling; dynam-
ics between phonology and semantics are more self-consistent than dynamics
betweenspelling and semantics. In Fig. 2, we describedthe microdynamics that
pertain� to naming� and spelling; English spelling-to-phonology is more consis-
tent than phonology-to-spelling. We also noted several times that our approach
assumes explicitdirect constraint from the environment (Gibson, 1986; Turvey
& Carello,� 1981; van Leeuwen, Steyvers, & Nooter, submitted; Van Orden &
Goldinger, 1994). Copying printed words or repeating spoken words both have
relatively transparent relations between performance and environmental con-
straints. In the case of repetition, acoustic� form and articulatory function have
anancienthistory of structural coupling, which explainswhy the two modalities
have virtually isomorphic descriptive features. The practice of copying printed
words doesn’t go quite so far back in the history of our species, but there is a
more general ancient structural coupling entailed by copying, as in drawing.
Moreover, the presence of the stimulus during performance explicitly supports
memory,� as� well as� feedback� for� error correction. Thus, all other things equal,
we expect performance on these tasks to be relatively less vulnerable to brain
damage. PW and WMAdemonstratevirtual ceiling performanceon these tasks,
but on no� other� tasks (see Table 1).

TABLE 1
Representative Performance in Each of Six Tasks by the Patients PW, WMA, PS, and

EAa (Proportion Correct)

Task Stimulus Response PW WMA PS EA

Copying Printed word Printed word .94 .94 — —
Repetition Spoken word Spoken word .99 .97 .40 .98
Reading aloud Printed word Spoken word .89 .78 .42 .40
Writing to

dictation
Spoken word Printed word .44 .55 .76 .48

Picture� naming:
Spoken response Picture Spoken word .72 .60 .51 .30

Picture� naming:
Written response Picture Printed word .46 .44 .90 .98

a
PW (Rapp et al., this issue); WMA(Miceli et al., this issue); PS (Hanley & McDonnell, this issue);

EA (Shelton & Weinrich, this issue).
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The relation between spelling and phonology is more consistent than the
relation between phonology and spelling. Also, printed letters are explicit in
the environment, but phonology is derived. Consequently, the relation that
supports naming is more self-consistent, and reading aloud is superior to
writing to dictation. The predicted direction of this contrast agrees with the
performance of PW and WMA. They both show better performance when
reading aloud than when� writing� to dictation.

Likewise, becausewe speak before and more often than we write, the history
of structural coupling that supports spoken responses in picture naming is more
self-consistent than the support for written responses in picture naming. The
predicted direction of this contrast also agrees with the performance of PW and
WMA. Additionally, spoken responses in picture naming are supported by less
self-consistent relations than spoken responses in printed word naming. The
predicted direction of this contrast also agrees with the performance of PW and
WMA. Altogether, these outcomes� weave� an agreeable� web of support in� line
with the� described topology� of intact� behaviour.

Less Agreeable Patterns

PS (Hanley & McDonnell, this issue) and EA (Shelton & Weinrich, this issue)
present us with patterns more complex than the performance topology of our
simple model. It is important to understand why this does not falsify our
approach, and what it means for fleshing out the topology� of a� more inclusive
model. For example, PS is generally poorer in tasks that require spoken
responses than in tasks that require written responses; even repetition perform-
ance is very poor. Specifically, PS’s profile contradicts three natural predic-
tions: (1) repetition ! reading aloud, writing to dictation, and both forms of
picture naming; (2) reading aloud ! writing to dictation; (3) picture naming
with spoken response ! picture naming with written response. However, the
model is� readily expanded to� become� more inclusive.

For example, the phoneme nodes would be more appropriately reconstituted
as emergent properties of recurrent acoustic-articulatory dynamics. Then we
could “lesion” the connections between acoustic nodes and articulatory nodes,
or add noise to randomly chosen connections, or ablate selected articulatory
nodes. We could even reconstitute the model to allow complex oscillations, as
in dynamic models of speech production (Browman & Goldstein, 1995).
Clearly we are not short of options, and all these options are directly in line
with the principled basis of our analysis. Any of our options for damaging
phonology would suffice to accommodate the overall dissociation in PS’s
profile. Namely, performance that requires a spoken response is worse than
performance that� allows a� written response� (see Table 1).

EA presents another interesting and complex profile. EA had extensive
speech therapy, but he remains nonfluent. He only produces sentences like
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“How are you” and “Good morning.” He writes single words to communicate,
but he cannot read them aloud. He is nonfluent and yet performs well in
repetition. Except for repetition, EA’s performance is low on any task that
involves a spoken word response. To simulate EA’s profile we would need the
previous reconstituted model. We could then add weak uniform noise to
acoustic-articulatory dynamics, cut the connections to letter nodes, and cut a
portion of connections to semantic nodes. Subsequently, any relatively weak
acoustic-articulatory attractors are isolated from sources of constraint other
than the preserved semantic constraints, consonant with better repetition per-
formance for imageable/concrete words. Like all other effects, imageabil-
ity/concreteness effects are predicted in terms of self-consistency. In this case,
self-consistency results from covarianceof words with contexts. Highly image-
able/concrete words vary less in meaning across contexts, which builds more
self-consistent relations with their surface forms (Van Orden, Pennington, et
al., submitted, and cf. Jones, 1985; Saffran, Schwartz, & Marin, 1979; Shallice,
1988). Nonword repetition is possible, butnonwords wouldnothave the words’
advantage of learned whole-word attractors, including phoneme-semantic at-
tractors,� so a� slight deficit in nonword repetition� is not surprising.

Please don’t get the impression that building an actual model is a piece of
cake; it� is� not. When all� parts of� a model� are� interdependent it can� take� quite� a
bit of work to explore the parameter space of the model and arrive at the
empirical topology (justask our friend Bill Farrar). However, success is assured
for any reliable empirical topology. The explanatory power of these models
does not reside in specific parameter settings; it resides in the general topologi-
cal� principles from which� they� are constructed.

The profiles of PS and EAhavenot exhausted our options. We may continue
to� � reconstitute nodes,� � making use of reliable finer-grain� � relations among
stimulus forms and cognitive functions, without doing any violence to the
overarching framework. As we noted, it is even possible to reconstitute point
attractors to accommodate complex time-varying behaviour such as that en-
tailed by on-line articulatory gestures. Likewise, the node activation denoted
as semantic could be expanded as emergent sensorimotor ensembles, including
visual-acoustic-articulatory-postural-gestural-etc. ensembles (Allport, 1983;
compare image schemas in Gibbs, 1994; Johnson, 1987; Lakoff, 1987). The
crux of our analysis is not the discovery of correct nodes, nor correct oscilla-
tions; it is the utility of general mathematical (topological) principles at all
scales of� analysis (Abraham & Shaw,� 1992).

The circular relation between the way we view data and the theoretical basis
of our analysis� presents no� more problems than the circular relation between a
linear reduction of data and the linear componential models that are then
inferred. Data cannot decidebetween linearand nonlinearapproaches to human
performance. Consequently, claims that� require� the� “truth”� of� one� or� the other
perspective can only be supported by acts of faith. The implication is simply
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this: We retain an explicit and healthy scepticism toward the theories we
propose, keeping one eye open for alternativeworkable frameworks. We shrug
off tyrannical “objective” truth, exercise pluralism, and keep pragmatic con-
cerns foremost (Lakoff,� 1987).

MULTISTABILITY, METASTABILITY, AND INTACT
PERFORMANCE

So far, we havedescribed intactnaming andspelling,and dissociations between
naming and spelling, in ways that are as plausible as any flow-chart model, but
not more plausible. One pragmatic test of a theoretical framework is whether
we may learn something new about the systems we study—something that we
might not have learned without the guiding framework. The flow-chart models
describedin the targetarticles havealready passedthis test (Carelloetal., 1992).
We need only track the history of reading research from the seminal articles of
Coltheart (1978) and Marshall and Newcombe (1973), to validate the utility of
flow-chart models for oganising and generating new findings. An explosion of
studies have described important� and reliable patterns in human� performance.
Recurrent network models and their entailed cognitive systems framework
havealsobegun to demonstrate this utility. As we describe next, this framework
has produced remarkable findings that are highly unlikely from a traditional
perspective.

The phenomena we describe are not widely appreciated in cognitive psy-
chology and neuropsychology. Consequently, it is easy to miss the fact that
they converge within a cognitive systems approach. Each of the phenomena
that we will describe pertain to printed and spoken word perception. However,
this narrow convergence is only a small set of the large variety of reported
findings that motivate this framework. From the broader perspective, an excit-
ing possibility has taken shape. Perception and action may be generally and
usefully describedas the products of a self-organising complex dynamic system
(Kelso� et� al.,� 1995).

Feedback and Multistability

The simple model described in the previous sections predicts a rather non-
intuitive microeffect. This prediction derives from a common feature of
dynamic systems—recurrent feedback. The specific prediction concerns mul-
tistability in the performance of tasks related to letters and phonemes, opera-
tionalised as ambiguity or inconsistency. Until recently, all discussion of
consistency has concernedaclassic, feedforward, spelling ® phonology effect.

INT is inconsistent in PINT because it may be pronounced as in MINT;
UCK is pronounced consistently as in DUCK. Inconsistent words such as PINT
are named more slowly than consistent words such as DUCK. Thus, the
feedforward consistency effect answers the question: Does it matter in visual
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word perception that a spelling� may have more than one pronunciation? From
the perspective of flow-chart models or feedforward connectionism, this is the
only sensible question: The letter string is unambiguous to subjects (it� is right
in front of their eyes); the only potential ambiguity arises with respectto derived
phonology. Once we consider perception as a product of recurrent feedback,
however, the concept of perceptual ambiguity must be generalised—we must
considerconsistency inthe feedbackdirectionas well. Now we ask the feedback
question: Does it matter in visual word perception that a pronunciation may
have more than one spelling? From the perspective of resonant dynamics,
feedback consistency should affect performance as strongly as classic, feedfor-
ward consistency.

Stone� et al. (in press) tested� for both feedforward and feedback consistency
effects in a lexical decision task. They used a factorial design that includedfour
types of words. In bidirectionally consistent words such as DUCK, the spelling
body ( UCK) can only be pronounced one way, and the pronunciation body
(/ uk/) is only spelled one way. In spelling ® phonology inconsistent words
such as MOTH, the spelling body can be pronounced in multiple ways (e.g.
BOTH), but the pronunciation body (/ ôth/) is only spelled one way. In
phonology ® spelling� inconsistent� words such as HURL, the� spelling� body is
pronounced in only one way, but the pronunciation body can be spelled in more
than one way (e.g. GIRL). In bidirectionally inconsistent words such as
WORM,� the� spelling body can be pronounced in multiple� ways (e.g. DORM),
and the pronunciation body can be spelled in multiple ways (e.g. FIRM). Stone
et al. found strong evidence for perception as a “two-way street.” Correct
response times were equally (and strongly) slowed by both feedforward and
feedback inconsistency. Additionally, they found a reliable interaction; all
inconsistent words produced approximately equal response times, even those
that� were� inconsistent in both directions.� Only words that were� bidirectionally
consistent produced faster and more accurate performance.

The feedback consistency� effect is compelling,� for several reasons.� First,� it
underscores the importance of bidirectional dynamics in perception. Second, it
demonstrates that stimulus function (in this case, a word’s “name function”)
lends perceptual structure to stimulus form. Again, note the nonintuitive nature
of this phenomenon. The letter string is clearly visible to the subject, and it
remains visible until a response� � is� � recorded.� � However, if� � feedback� � from
phonology suggests that some other letter-string could have been presented,
performance is slower. Third, it could only be predicted by a theory emphasis-
ing bidirectional dynamics. It is straightforward corroboration for bidirectional
multistability in subword dynamics. In a simple model, multistable (ambigu-
ous) pronunciations and spellings are resolved through successive cycles of
cooperative (excitatory)� and competitive (inhibitory)� feedback.

Ziegler and his colleagues observed a similar counter-intuitive effect in a
letter-search task (Ziegler & Jacobs, 1995; Ziegler, Van Orden, & Jacobs, in
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press). Subjects in this experiment were briefly presented with a letter string
such as BRANE (a pseudohomophone of the word “brain”), followed by a
pattern mask (#####). The subjects were instructed to respond whether a
predesignated letter was present in the masked letter string, for example the
letter “i”. In the case of BRANE,� they (mis)reported having� seen the letter� “i”
more often� than� in� a control stimulus. Similarly, they failed� to report the� letter
“i” in the letter string TAIP (a pseudohomophone of the word “tape”), more
often than in a control stimulus. Presumably, the phonology of the pseudo-
homophones BRANEor TAIP suggested that“brain” or “tape” were presented,
causing subjects to misreport the presence or absence of the letter “i.” These
results also corroborate the description of word perception as a multistable
dynamic� system.

Hysteresis and Multistability

Betty Tuller and her colleagues havedemonstrated hysteresis in speechpercep-
tion (Tuller, Case, Ding, & Kelso, 1994). Hysteresis effects are a well-defined
signature of multistability in nonlinear systems. In the present example, this
means there are multiple perceptions of the same spoken stimulus. Tuller et al.
focused on the classic phenomenon of categorical speech perception (Liber-
man, Harris, Hoffman, & Griffith, 1957). In one experiment, they manipulated
the presentation order of speech stimuli. These stimuli were constructed to
morph between the words SAY and STAY—their acoustic properties changed
incrementally along a continuum� from SAY to STAY (cf. Best, Morrongiello,
& Robson,� � 1981; Hodgson & Miller,� � 1992). Each run of Tuller et� � al.’s
experiment presented a subject with this continuum running from SAY to
STAY and back again (or vice versa). Hysteresis was observed on 41%of runs
across subjects and conditions. Specifically, for some intermediate range of
stimuli, a subjectperceivedthis rangeof stimuli as SAY if it had been preceded
by SAY stimuli,� but� they perceived the identical range as STAY if it had been
preceded� by� STAY stimuli.� The intermediate range is thus multistable.

As noted, identical stimuli were perceived as SAY or STAY depending on
preceding stimuli. Tuller et al. (1994) were not concerned with which reported
stimulus identity is the “true” representation. They explored instead the inter-
dependence of context and stimulus. They asked: What is the pattern of
interaction between perceivers and contexts that characterises categorical
speech perception? The hysteresis pattern is a generic pattern that is observed
widely in physical, chemical, biological, and cognitive systems. Historically,
in� psychology,� hysteresis� has been� considered� a� nuisance effect.� For example,
it motivated Fechner’s method of limits in classical psychophysics—effec-
tively, a statistical technique to makehysteresis disappear. Currently, hysteresis
is better understood with respect to multistability. Thus, although Tuller et al.’s
results were not derived from the simple model we described, hysteresis is
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convergent on the theoretical basis of this model. This fundamental construct
provides a general and natural basis for understanding ubiquitous multistability
in language,e.g. feedforwardand feedback inconsistency, homography (LEAD
or WIND), homophony (ROWS vs. ROSE), polysemy (Pete Rose is OVERthe
hill. vs. There were flies all OVER the ceiling—from Lakoff, 1987), and
syntactic/semantic ambiguity (The church pardons very few people. vs. The
church pardons are difficult to obtain—adapted from Rayner & Pollatsek,
1989).

1/f Noise and Metastability

DavidGildenandhis colleagueshavedemonstratedacomplex interdependence
between trial-by-trial response times in several cognitive tasks, including a
word recognition task (Gilden, in press; Gilden, Thornton, & Mallon, 1995).
The source of this interdependence is fully cognitive in affiliation (it does not
arise in a “noncognitive” simple reaction time task, for example—Gilden et al.,
1995). Also, mundane sources of priming such as DOCTOR ® NURSE
semantic priming, MINT ® HINT form priming, or successions of identical
responses were ruled out as potential sources (Gilden, in press). Instead, the
source may be a metastable complex dynamic process. Metastability implies
that a system never settles fully in a dominant attractor, and is thus more
flexible. Remember the rough analogy from the earlier section on neurobiol-
ogy: A person who always has alternative plans B, C, and D at the ready, is
more flexible� (metastable)� than a� person who is stuck in� plan� A.� Metastability
has been proposed to� explain the� smooth flexibility� of perception and action.

Metastability in response time (and neural activity) is revealed in a rather
esoteric phenomenon—1/f noise—observed in the “error” varianceof response
time (the variance left over when treatment effects are partitioned out). This
phenomenon can be very difficult to grasp because it goes so strongly against
the� grain� of� typical psychological� analyses. After all, we’re used� to discarding
error variance, not analysing it for structure. 1/f noise is a mathematically
generic� pattern expressed here in trial� by� trial� response time.� If� we graph� each
response time in a sequence, the data points will oscillatebetween fast and slow
response times throughout the series of trials. If we “connect the dots,” they
form a� complex� waveform. In� turn,� this� complex� waveform may be viewed� as
a composite of waves that span a large range of frequencies. 1/f noise is a weak
inverse relation between “power” (amplitude of change in response time) and
the� frequency� of composite� waves.

This correlationexists betweenchanges in response timeseparated by small,
intermediate, or large intervals. These nested correlations comprise a well-
defined mathematical object from fractal geometry. Fractal objects are self-
similar. So far, 1/f noise is only seen in the time domain, but self-similarity� is
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easier to grasp in terms of ordinary objects that are extended in space. For
example, a coastline is self-similar; it has a ragged structure of the same
complexity when viewed from outer space, from an aeroplane, or from a cliff
above the shore.

So what do we make of this rarefied phenomenon? On the down side, the
presenceof 1/f noise in response time is inconsistentwith the conventional logic
of partitioning response time into independent sources of variance, as in
ANOVA. Virtually every study in which response time is the dependent
measure averages response times across trials, items, and subjects. Compari-
sons are always conducted between means. One key assumption of this practice
is that the response time in each trial is independent of the response times in
other trials. The assumption of independence is at the heart of the linear
statistical models that are used to discover independent sources of variance.
The presence of 1/f noise contradicts this assumption. Thus, generally,we may
have to rework the relation between data, method, and theory in response time
studies. And, specifically, we are justified in our scepticism concerning the
effect = structure assumption. It requires that data may be strictly carved at
their� joints to� yield� independent� effects.

On the up side, 1/f noise may be a signature of metastability. If so, then it
converges with the previous phenomena in this section to corroborate the utility
of our approach. 1/f noise accounts for a stunning 70% (or more) of subjects’
variance in response time for each of the cognitive tasks that were evaluated
(Gilden, in press). By comparison, the best conventional models of word
naming account for 3–12% of variance in average naming times (Besner, in
press).

We wish to stress two caveats before we leave this section. First, 1/f noise
does not confirm our simple model of naming. In fact, our simple� model does
not produce this phenomenon. The corroboration is for the cognitive systems
framework that we work within. The simple model produces lower-dimen-
sional behaviour than a more inclusive model that would produce 1/f noise.
Once again, each trajectory produced by the simple model is a low-dimensional
shadow of a trajectory that would be produced by a higher-dimensional model.

Second, our mainpoint in reviewing these phenomena was to add somemeat
to the utility of our approach. The previous findings do not falsify the more
conventional linear analyses of cognitive systems. Nonlinear accounts cannot
be distinguished from linear accounts on the basis of correspondence to data
—evendata as compelling as those of Gilden (in press; Gilden et al., 1995)and
Tuller et al. (1994). A linear componential model could be constructed for any
data set, given enough components (Stone & Van Orden, 1993). Even the
analytic difficulties raised by Gilden’s data could be overcome if one wished
to ignore the nonlinearperspective. Datacanalways be “corrected”toeliminate
interdependence between successive trials (West & Hepworth, 1991). This
practice can be very useful depending upon the goals of the analysis. However,
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in� the case of� Gilden’s data, it� would� effectively send to� the trash can� 70%(or
more) of theoretically meaningful� variance.

Our general point is simply this: The basis for applying any particular
framework is exclusively pragmatic. The practical utility of strongly nonlinear
models is demonstrated as they become successful guides to a more general
and inclusive understanding of cognitive phenomena. The practical utility of
linear models is questioned if they would fail to discover theoretically mean-
ingful phenomena. In that regard, the phenomena reviewed in this section
question� the utility of� the effect = structure assumption.� These phenomena� are
antithetical to thatassumption, and they couldneverhavebeen anticipatedfrom
the� standard approach to� patient data.

SUMMARY AND CONCLUSIONS

Dissociations cannot be trusted to isolate independent representations. The
existence of plausible alternatives undermines their reliability for reducing
performance phenomena to single causes (Van Orden, Pennington, et al.,
submitted). Induction of single causes required a priori the truth of single
causes. Still, it is natural to prefer the familiar relation between componential
methods, theory, and data. Moreover, there seems to be a general utility in such
a pursuit, at least initially. Bechtel and Richardson (1993) review historic
analyses in which, initially, scientists find it useful to assume linear inde-
pendence (single causes) as a working hypothesis. Be that as it may, behaviour
characteristics of linear independence� are� a� small� subset� of� the� generic behav-
iours characteristic of complex dynamic systems (Abraham & Shaw, 1992;
Giunti, 1995); they cannot be trusted to validate the effect = structure assump-
tion.

Some readers might be tempted to claim� that letter, phoneme, and semantic
nodes are themselves independent representations. But that would imbue these
notational distinctions with� causal properties� that� they cannot bear (cf. Ander-
son, 1991; Perrone & Basti, 1995; Putnam, 1981). At most, nodes denote
emergentform-function dynamics (structural couplings) that are not explicit in
a model. As we noted, the node activation denoted as phonologic could emerge
in recurrent acoustic-articulatory dynamics, and the node activationdenoted as
semantic could be effected in metastable sensorimotor trajectories, including
visual-acoustic-articulatory-postural-gestural-etc. trajectories. Thus, the acti-
vation trajectories denoted as semantic emerge from the same stuff—i.e. the
same excitable medium—as letter and phoneme “nodes.” The simple model
system is not real, except in its capacity to produce a trajectory that mimics
human performance. It is plausibly interpreted as a low-dimensional projec-
tion—again, the shadow—of a vastly higher-dimensional description of read-
ers, writers,� texts, and laboratories.
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No reliable basis exists for the discovery of primitive causal structures in
human performance (Uttal, 1990; Van Orden, Holden, et al., submitted; Van
Orden, Pennington, et al., submitted). Complex natural systems may not give
up� the true� bases of� their� behaviour� (Cohen� &� Stewart,� 1994; Goodwin, 1994;
Lindley, 1993). We accept this complexity and refuse to reify modelling
notations such as nodes. Nodes are chosen to accommodate the grain-size of
organism-environment coupling that predicts behavioural phenomena (Van
Orden et al., 1990; Van Orden & Goldinger, 1994, and cf. Varela et al., 1991).
Again, the explanatory isomorphism runs from described performance to a
model’s dynamic trajectory. Data make reference to such trajectories, exclu-
sively; there are no data leftovers from which to deduce static atomic structures
in an observed behaviour. Consequently, from a cognitive systems’ perspec-
tive, the effect = structure assumption is not wrong; it is simply impracticable.
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