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Does sample rate introduce an artifact in spectral analysis
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Spectral analysis is a widely used method to estimate 1/fα noise in behavioral and
physiological data series. The aim of this paper is to achieve a more solid appreciation
for the effects of periodic sampling on the outcomes of spectral analysis. It is shown
that spectral analysis is biased by the choice of sample rate because denser sampling
comes with lower amplitude fluctuations at the highest frequencies. Here we introduce
an analytical strategy that compensates for this effect by focusing on a fixed amount,
rather than a fixed percentage of the lowest frequencies in a power spectrum. Using
this strategy, estimates of the degree of 1/fα noise become robust against sample rate
conversion and more sensitive overall. Altogether, the present contribution may shed new
light on known discrepancies in the psychological literature on 1/fα noise, and may provide
a means to achieve a more solid framework for 1/fα noise in continuous processes.
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Over recent decades, there has been an increasing interest in
the time-evolutionary properties of psychological data series, and
the number of methods to quantify the degree-of-randomness in
time series data is rapidly expanding. It is becoming increasingly
acknowledged that the variation from one measurement to the
next rarely fluctuates randomly, as traditionally assumed in most
standard statistical methods (Gilden et al., 1995; Gilden, 2001;
Van Orden et al., 2003). Especially the presence of 1/f noise (also
called 1/f scaling or pink noise) in repeated performances is a
robust finding. The presence of 1/f noise implies that a data sig-
nal may not be accurately described without incorporating time
at the level of analysis. We will first explain the workings of
spectral analysis through a fictive example, and then we explain
how spectral analysis can be used to estimate the presence of 1/f
noise.

Consider a participant, performing a 500-trial simple response
task. The task instruction is, for instance, to press a button when-
ever a stimulus is presented. The dependent variable of interest for
the researcher is response time to the stimulus. This participant’s
average response time turns out to be 500 ms with a standard
deviation of 35 ms. However, this participant’s task performance
constitutes the unrealistic case where the pattern of response vari-
ability over time looks exactly like a sine wave (see Figure 1A).
Now, imagine another participant, who received the same task
instruction, and showed exactly the same response times but
in a different trial order (see Figure 1C). While both response
series have an identical mean and standard deviation, they show
a distinct pattern of responses over time.

Statistics based on central tendency measures are not sensitive
to the different pattern of variability observed in both partic-
ipants. If in one experimental group all participants were like
participant 1, and in another experimental group all participants

were like participant 2, a t-test for instance, would not dif-
ferentiate among both groups because the groups would yield
equal means and standard deviations. Yet, a different inherent
process likely produced the responses. Thus, a researcher may
wonder whether trial-to-trial fluctuations observed in an exper-
iment occur randomly or not, and ask whether there is anything
systematic about the observed temporal patterns of variation.

Spectral analysis is one of the available methods to estimate
the degree of randomness in a pattern of responses over tri-
als. Spectral analysis translates dependencies in the time domain
(i.e., a pattern of change in response time over trials) as sim-
ple features in the frequency domain using an operation called a
Fourier transform, which decomposes the data series containing
changes in response over trials into its constituent frequencies.
Next, the power (the square of the amplitude) at each frequency
in the decomposed signal is plotted in a so-called a power spec-
trum (also called power spectral density function). For instance,
a power spectrum of participant 1′ s response series (shown in
Figure 1B) reveals one peak at the dominant frequency of the
sine wave. Participant 2′ s responses do not yield a dominant fre-
quency in the time domain, and consequently a spectral analysis
does not reveal any peaks in the power spectrum (see Figure 1D).
Thus, while the performances of both participants are indis-
tinguishable using central tendency measures, the two different
temporal arrangements of the same responses are distinct in
the frequency domain. The power spectrum thus provides infor-
mation which effectively complements information from t-tests,
ANOVA’s, etc. (see Slifkin and Newell, 1998; Riley and Turvey,
2002, for more examples).

Spectral analysis can not only be used to detect simple period-
icities as in the example above, but can also be used to quantify
more complex and realistic patterns of variation in psychological
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FIGURE 6 | The same power spectra as shown in Figure 5, estimated from one Galvanic Skin Response time series sampled at 200 Hz (A), 100 Hz (B),

50 Hz (C), and 25 Hz (D). Spectral slopes are fitted over the lowest 50 of 215 (A), 214 (B), 213 (C), and 212 (D) estimated frequencies.

M samples. It is to be expected that this post-hoc reduction in
sample rate will effectively alter the spectral estimates for sampled
data signals.

If increasing the sample rate has indeed the effect of reducing
the amplitude of the signal at the highest frequencies, the over-
all estimated α exponent should increase as sample rate increases.
This bias should not affect the low-frequency range of the power
spectrum, and should become more pronounced when the spec-
tral slope −α is fitted over a wider frequency range. This is
investigated by fitting the spectral slope over 10, 25, or 100% of
the lowest frequencies in the power spectrum. The outcomes are
expected to be biased more strongly when the slope is fitted over
100% of the spectrum, and gradually become less biased as the
slope is fitted over 25% (cf. Eke et al., 2002) and 10% (cf. Taqqu
et al., 1995) of the lowest frequencies only. In contrast, when the
slope is fitted over the lowest 50 frequencies only, and is thus fitted
over a stable low-frequency range, with a stable cut-off frequency,
it would be natural to expect the bias to be absent.

THE RELIABILITY OF α
The empirical data series have been collected in a precision aim-
ing study. In the study, 15 participants were invited to draw
lines back and forth between two visual targets with a stylus,
as fast and as accurately as possible. Participants received no
instruction concerning pen pressure or pen tilt strategies. The
targets were presented on a printed sheet of paper, one at the
left side of the paper and one at the right side. The target width
was 0.4 cm and the distance between targets was 24 cm. One

block of 1100 trials was completed with the dominant hand.
When the last trial was reached, a tone signaled the end of the
experiment.

Pen pressure (in grams) and pen tilt (absolute deviation from
the center of the stylus, in cm) coordinates were recorded using a
digitizer tablet connected to a regular PC. The tablet samples at a
temporal rate of 171 Hz. In addition, a GSR signal was recorded
on the fingertips of the non-moving hand at 200 Hz. Also, arti-
ficial 15 white noise signals (1/f 0), 15 1/f noise signals (1/f 1),
and 15 Brownian noise signals (1/f 2) were generated with a series
length of 216 data points, using an Inverse Fourier transform
algorithm described by Lennon (2000).

After data collection, each time series was prepared to fit the
needs for the spectral analysis (cf. Holden, 2005). First, outliers
outside 3 × the standard deviation from the mean were removed.
Next, because the Fourier transform fits stationary sines and
cosines to the data series, simple drifts or long-term trends may
distort the results. Linear and quadratic detrending ensures that
the analyzed data series is in line with the idealized mathemat-
ics of spectral analysis. Thus, linear and quadratic trends were
removed for all data series (cf. Holden, 2005). Then, the origi-
nal time series were normalized, and truncated by removing the
data points at the beginning of the data series until 216 data points
were left. None of the empirical data series contained fewer than
216 data values.

Next, the original data series (216 data points) were down-
sampled by removing every next data point from the analysis,
so that the new data series length was 215. This procedure was
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iterated until only 210 data points were left, thereby reducing sam-
ple rate by a factor of 26. Then, for each of the resulting series, the
spectral slope was either fitted over 10, 25, or 100% of the lowest
frequencies, or over the 50 lowest frequencies.

RESULTS AND DISCUSSION
The results from the pen pressure, pen tilt, and GSR data are
shown in Figures 7A–C, which represents the fitted slope −α over
a range of different sample rates for each data set. The differ-
ent choices of fit are shown as separate lines in each Figure. It
can be seen that regardless of the percentage of low frequencies
used to fit the slope −α (10, 25, or 100%), the observed α val-
ues effectively change in function of sample rate. As predicted, α

exponents are higher at high sample rates. The artifact is most
apparent when fitting the slope over the entire power spectrum
and gradually becomes somewhat less dramatic as smaller por-
tions of the low-frequencies are used to fit the spectral slope −α.
When fitting over the 50 lowest frequencies, however (shown as
50Low in Figures 7A–D), the slope −α remains robust against
sample rate conversion.

Only the pen tilt data do not entirely confirm the expected arti-
fact. At the highest sample rates, α values derived from a fit over
the entire spectrum appear more robust than α values derived
from a fit over the 10 or 25% lowest frequencies. But also in this
example, α values derived from a fit over the 50 lowest frequencies
constituted the most robust solution.

The simulated noise patterns, however, reveal a very distinct
(hence, absent) effect of sample rate. The four choices of fit that
were evaluated are shown in Figure 7D for each category of noise
simultaneously. The random (α = 0), 1/f (α = 1) and Brownian
(α = 2) noise simulations reveal robust values of α, regardless the
choice of fit. This result confirms that the change in α arises from
differences in sample density rather than from the differences in
series length per se (with the 100% fit somewhat less reliable than
the other choices of fit, however).

These results demonstrate that the relatively arbitrary choice
of a sample rate dramatically alters the value of the α exponent
if the spectral slope −α is fitted over a fixed percentage of low-
frequencies. The bias is so strong that sample rate appears to
be more influential on the estimated exponents than the process
under scrutiny itself. This artifact is obviously problematic and
leaves researchers with difficult decisions concerning the reliabil-
ity of their analysis. The strategy of spectral analysis introduced
here results in scaling exponents that are robust against arti-
facts that come with dense sampling, and thus may solve those
questions.

THE SENSITIVITY OF α

A final confirmation of the introduced strategy for spectral analy-
sis would require an evaluation of the sensitivity of the estimated
exponents, in addition to their robustness against sample rate
conversion. Sensitive exponents are more likely to differentiate

FIGURE 7 | Average α scaling exponents from 15 pen pressure (A),

pen tilt (B), Galvanic Skin Response (C), and simultated 1/f 0, 1/f 1,

and 1/f 2 data series (D) are shown on the y-axis. The x-axis shows

sample rate for the empirical data series, and series length for the
simulated series that also were downsampled by a factor of 2 in each
step on the x-axis.
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among experimental conditions, and more clearly reveal the
relation among different variables, given that such relations are
present. In this case, we evaluate the correlation among different
streams of 1/f noise (pen pressure and pen tilt) that were collected
simultaneously in the previously introduced motor task.

The pattern of correlations between both streams of 1/f noise
(pen pressure and pen tilt) shown in Figure 8 is remarkably
heterogeneous over different sample rates, except for the strat-
egy introduced here. α exponents estimated from the original,
non-down-sampled data appear uncorrelated when relying on
conventional spectral strategies. The correlations among pen
pressure and pen tilt scaling exponents tend to grow stronger
as sample rate decreases (hence, when fewer “smoothed” high-
frequencies are introduced in the analysis). The introduced
method for spectral analysis (shown as 50Low in Figure 8),
in contrast, indicates strongly correlated streams of 1/f noise,
regardless of sample rate.

THE VALIDITY OF α

The results presented above suggest that if one follows the exact
same procedure in an experimental set-up, but uses a differ-
ent measurement device or device setting, one may end up with
vastly deviant outcomes if sampling artifacts are not anticipated.
Anticipating sampling artifacts can be as simple as fitting the
power spectrum over a set number of low frequencies (i.e., fit-
ting over a stable low-frequency range), rather than fitting the
regression line over a set percentage of frequency (i.e., fitting over
a variable low frequency range). This practice results in more reli-
able and more sensitive scaling exponents. Nonetheless, the goal
should not be to fit over a prescribed amount of low frequencies
(e.g., 50) per se. Importantly, as long as the slope does not change
in function of sample rate (i.e., after downsampling), any set
number will do reliability-wise. For instance; an idealized 1/f pro-
cess would reveal a linear slope regardless of the fitted frequency
range (hence Figure 7D).

FIGURE 8 | Correlation coefficients among α exponents estimated from

pen pressure and pen tilt data (y-axis, N = 15) over a range of sample

rates (in Hz; x-axis) using different strategies for spectral analysis.

Empirical data often show scale-invariance in a restricted
range only, however. In these cases an optimal number of frequen-
cies can be determined by performing a simple downsampling
test (i.e., Figure 7). When the scaling outcomes do not change
in function of sample rate the chosen frequency range to fit is
reliable. If the outcomes do change, the number of low frequen-
cies in the fit should be reduced until the outcomes remain robust
against sample rate conversion. In this process, one should obvi-
ously be aware of two final criteria: (1) the amount of frequencies
should be sufficient to yield reliable regression outcomes, and
(2) a linear range of the power spectrum is preferred given the
nature of the regression analysis.

With these less idealized examples of 1/f scaling, changing the
frequency range used for slope fitting may reveal ever changing
slopes over different frequency ranges, however. This would mean
one would want to ascertain the validity of an estimate in addi-
tion to its reliability over different sample rates, leading to the
question whether the scaling exponents derived using the sug-
gested fitting approach are representative for the process under
scrutiny.

To inquire the validity of the suggested fitting approach, we
simulated artificial series using the fBmW model (Thornton and
Gilden, 2005). This procedure produces series that compose a
scaling part α (i.e., a fractional Brownian motion with a known
exponent α) with white noise β (whose variance is β2) added
to it. Given that relative roughness decreases at higher sampling
rates (cf. Figure 4), it is fair to assume that the high-frequency
range of the spectrum is an artifact of sampling, and that the
valid information is to be found in the low-frequency range
i.e., the alpha put in the model. In addition, faster sampling
arguably is more susceptible to instrument noise that may distort
spectral outcomes at the higher frequencies. Thus, power spectra
produced by the fBmW-model present examples in analogy with
the sampling rate artifact, producing a well-defined elbow in the
power spectrum.

Four example power spectra produced by the model, with
α = 1.5 and β = 1.5, 1, 0.5, and 0, respectively, are shown in
Figure 9. We know from these parameters that a valid scaling
estimate should approximate 1.5; a reference point against which
different fitting strategies can be assessed. The x-axis in Figure 10
shows the number of low frequencies included in the regression
fit. The pentagram-shaped markers indicate the exponents esti-
mated when the spectra where fitted over 25% of lowest frequen-
cies. The inset reveals a region of convergence around roughly 50
frequencies, after which a point of expansion reveals the white
noise process added to varying degrees. This observation supports
the suggestion that a fit over the lowest 50 frequencies pro-
vides valid estimates of the “true” scaling exponent α (i.e., 1.5),
and questions the validity of estimates over the 25% of lowest
frequencies.

This simple simulation confirms the validity of the proposed
fitting strategy, but a better analogy to the empirical data is
possible, however. The produced series keep a number of vari-
ables stable that vary in the empirical series (e.g., series length,
number of frequencies in the spectrum, relative roughness). Also,
the resulting spectra are simple in the sense that they reveal a sin-
gle elbow, rather than the more complex staircase-like shape of
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FIGURE 9 | Four example spectra are shown, derived from the signals simulated using the fBmW-model.

FIGURE 10 | Average scaling estimates of ten simulated signals (length

is 216 data points), with α is 1.5, and β is 1.5, 1, 0.5, and 0, respectively,

fitted over a varying number of low frequencies. The pentagram
markers indicate the scaling estimates for a fit over the 25% lowest
frequencies. In the inset, it is shown that the estimates converge closely on
the modeled α parameter at around 50 low frequencies.

the empirical spectra seen in Figures 5 and 6. We therefore deter-
mined empirically the parameters that resemble the empirical
power spectra more closely.

In search for a more realistic representation, we constructed 10
series with α = 1.35 with a series length of 216, with white noise
added to it (β = 1.6). The series were smoothed with a moving
average filter with a span of 14 data points, to mimic the decrease
in relative roughness at higher sample rates. This procedure added
a steeper slope (i.e., lower amplitudes) at the high frequencies in
addition to the initial flattening due to the added white noise.
Then a portion of white noise was added again, to complete the
staircase-shape of the empirical power spectra (i.e., white noise at
the high-end of the power spectrum). Next, three times 10 series
were produced, reducing in each case the series length and the

number of overall estimated frequencies by a factor of two. Also
the β parameter and the span of the moving average filter were
reduced at each step. Examples of the resulting power spectra are
shown in Figure 11.

When fitted over a varying number of frequencies, the average
estimate of 10 simulated series for each set of parameters con-
verged on the “true” α of 1.35 at around 50 low frequencies. This
can be seen in Figure 12 (see inset), which also shows the scaling
estimates (as pentagram-shaped markers) when the lowest 25%
of frequencies were used to fit the slope. Note that Figure 12 is
restricted to 25% of low frequencies.

GENERAL DISCUSSION
When spectral scaling exponents are estimated without antici-
pating artifacts introduced by sample rate, the exponent values
themselves may fluctuate widely. The order of magnitude of these
discrepancies is dramatic: scaling exponents may differ in mag-
nitude by 1 or 2 depending on sample rate, while the order of
magnitude of reliable differences in exponents between experi-
mental groups and conditions are often in the range of 0.05–0.25
(e.g., Chen et al., 2001; Kello et al., 2007; Wijnants et al., 2009).
These discrepancies may account for known inconsistencies in
the psychological literature on 1/f noise, and perhaps, for the
lack of a comprehensive framework of 1/f noise in continuous
performance measures. Here we have introduced an empirical
solution to this problem. The proposed strategy for spectral anal-
ysis is robust against changes in sample rate and renders more sen-
sitive and valid α exponents compared with more conventional
strategies of analysis.

The artifact introduced in the high-frequency range of a power
spectrum by differences in sample rate is not due to the inherent
difference in data series length (hence, Figure 7D) but is rather a
natural consequence of the resulting differences in sample density.
That is, denser sampling implies a decrease in relative rough-
ness (i.e., because the highest frequencies in a measured signal
have lower amplitude) compared with more sparsely sampled
data. This artifact is important because it is implied that sub-
tle methodological choices, often choices of convenience, may
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