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Abstract: When people perform repeated goal-directed movements, consecutive 12 
movement durations inevitably vary over trials, in poor as well as in skilled 13 
performances. The well-established paradigm of precision-aiming is taken as a 14 
methodological framework here. Evidence is provided that movement variability 15 
in closed tasks is not a random phenomenon, but rather shows a coherent 16 
temporal structure, referred to as 1/f scaling. The scaling relation appears more 17 
clearly as participants become trained in a highly constrained motor task. Also 18 
Recurrence Quantification Analysis (RQA) and Sample Entropy (SampEn) as 19 
analytic tools show that variation of movement times becomes less random and 20 
more patterned with motor learning. This suggests that motor learning can be 21 
regarded as an emergent, dynamical fusing of collaborating subsystems into a 22 
lower-dimensional organization. These results support the idea that 1/f scaling 23 
is ubiquitous throughout the cognitive system, and suggest that it plays a 24 
fundamental role in the coordination of cognitive as well as motor function. 25 

Key Words: fractal scaling relations, nonlinear dynamics, motor coordination, 26 
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INTRODUCTION 28 
Repeated instances of human performance are usually measured using 29 

summary statistics of central tendency and average variation around a central 30 
tendency. It can be more informative however to complement summary 31 
measures with time-evolutionary measurements (Riley & Turvey, 2002; Slifkin 32 
& Newell, 1999). Time series of measured values can be qualitatively different 33 
for identical means and standard deviations. For example, consider an artificial 34 
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time series in which measured values follow an idealized sine wave across the 35 
trials of an experiment; measurements fluctuate around the mean in a 36 
deterministic, non-random cycle. Compare that with the same “sine wave” data 37 
rearranged in a random sequence of occurrence. The respective time series have 38 
equivalent means and standard deviations, but one comes from a random process 39 
and the other from a simple oscillating process. 40 

Repeated measures of human performance oscillate in a more complex 41 
pattern than the sine wave, but it is a pattern nonetheless, and may prove just as 42 
revealing of underlying dynamics. Especially helpful in this regard are recent 43 
advances in the study of nonlinear dynamics. By applying an advanced 44 
nonlinear toolbox, it is possible to gauge fractal patterns in data, as well as 45 
indices of determinism or entropy and other descriptor variables (Riley, 46 
Balasubramaniam, & Turvey, 1999; Slifkin & Newell 1999). These tools are 47 
applied in the present case to test whether the pattern of variation changes with 48 
practice in a simple perception-action task. Our starting point is the observation 49 
of 1/f scaling in time series of human performance – the widely observed finding 50 
of long range correlations across successive data points in motor coordination 51 
experiments (Riley & Turvey, 2002; Slifkin & Newell, 1999; Treffner & Kelso, 52 
1999) and cognitive performances (Gilden, Thornton, & Mallon, 1995; Gilden, 53 
2001; Van Orden, Holden, & Turvey, 2003). 54 

The widely observed 1/f scaling relation expresses aperiodic, fractal 55 
fluctuations of available frequencies across a time series of data. In a spectral 56 
decomposition of the data signal, however, the amplitude at a particular 57 
frequency of fluctuation is inversely proportional to the frequency itself. One 58 
observes a nonlinear, log-log relation between the frequency of variation across 59 
the data series and the magnitude of variation, for a given data set. 60 

The pattern implies that no characteristic scales dominate the 61 
underlying process; the same dynamics occur at every scale, including very high 62 
amplitude and low frequency fluctuations. In fact, the more data one collects – 63 
that is the longer the data series – the larger the magnitude of variation for the 64 
whole set (Van Orden, Holden, & Turvey, 2005). Consequently the implicit 65 
amount of variance is undefined as total explicit variability increases rather than 66 
stabilizes when larger samples are collected (Gilden, 2001; Holden, 2005; 67 
Mandelbrot, 1982). Interestingly, 1/f scaling appears to be a ubiquitous property 68 
of repeated measures in human performance (Kello, Beltz, Holden, & Van 69 
Orden, 2007). An example data series yielding a 1/f scaling pattern is presented 70 
in Fig. 1a. 71 

The phenomenon of 1/f scaling demonstrates the importance of 72 
considering how variability scales with sample size in behavioral data (Riley & 73 
Turvey, 2002). This information is not implied by the sampled amount of 74 
variability and can only be obtained by incorporating the dynamical properties 75 
of behavioral data as an essential aspect of measurement. Time series 76 
phenomena like 1/f scaling are simply unavailable in summary statistics such as 77 
central tendency or magnitude of variation. As in the example of the sine wave, 78 
1/f scaling disappears if the original order of measurement is randomized.  79 
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 80 
Fig. 1. A typical example of 1/f scaling in an intact behavioral time series of one 81 
participant (a), and the same time series after randomization (b), and their 82 
respective power spectra (c and d). A slope of -1 indicates ideal 1/f scaling, a 83 
slope of 0 indicates random sequential ordering, see Method section. 84 

Figure 1 illustrates this point using actual data. Figure 1b shows the 85 
same data series presented in Fig. 1a after randomizing the sequence trial order 86 
in which the data points were collected. The same mean and standard deviation 87 
are computed from the randomized time series, but the time-evolutionary scaling 88 
relation is erased (compare spectra in Fig.1c and Fig. 1d). The rationale for 89 
summary statistics, however, the central limit theorem, specifies that collective 90 
aggregate properties of independent components obey a Gaussian distribution. 91 
Consequently, measured over a duration or sample size T, the standard deviation 92 
of a data series will increase as Th where the exponent h = ½ implies randomness. 93 
For fractal processes like 1/f scaling, however, h exceeds that value, which calls 94 
into question the basic justification of the summary statistics (Mandelbrot, 95 
1982). 96 

Changing Dynamics with Motor Learning 97 
Although the occurrence of 1/f scaling is widely reported, the 98 

underlying mechanism remains an enigma throughout the physical, biological, 99 
and psychological sciences. Apart from its presence, tempting issues remain 100 
such as why the relative presence of 1/f scaling changes in different human 101 
performances. Whereas decreasing amounts of variability typically indicate 102 
improving levels of performance (e.g. Fitts, 1954), no such general statement 103 
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can be made with respect to the temporal structure of variability in human 104 
performance. An important suggestion, however, is that the structure of 105 
movement variability may provide important clues regarding the compression of 106 
degrees of freedom into a controllable, low-dimensional coordinative structure 107 
(Mitra, Amazeen, & Turvey, 1998; Riley & Turvey, 2002; Turvey, 1990). In this 108 
article we pursue consequences of this suggestion. 109 

The specific question of the present research is whether fractal patterns 110 
change after practice in precision aiming. Pointing or precision aiming is a long-111 
established paradigm to study coordination of perception and action. In 112 
precision aiming, participants might move a pointer or a computer mouse 113 
between designated targets. In our experiment they move a stylus back and 114 
forth, repeatedly, between two targets on a digital tablet. In general, targets can 115 
be wide or narrow in diameter and closer or further apart, both of which affect 116 
performance. Fitts’ law takes into account target width and the distance between 117 
targets to accurately predict movement-time central tendency, given accuracy 118 
greater than 96% (Fitts, 1954). The study that we report in this article used 119 
conditions yielding performance well below the 96% accuracy criterion. The 120 
purpose was to gauge changes in performance after motor practice in precision 121 
aiming. To further insure the opportunity for performance to improve, we 122 
required non-dominant hand performance.  123 

Our specific interest is change in the structure of variation in movement 124 
times. This interest stems from recent developments in complexity theory and 125 
widespread observations of complex variation in perception-action tasks. Yet it 126 
remains to be discovered whether the structure of variation changes due to 127 
training in perception-action tasks.  128 

We assume that 1/f scaling is a reflection of intrinsic self-organizing 129 
interaction-dominant dynamics (Van Orden et al., 2003). If so, then the logic of 130 
our experiment follows: first, 1/f scaling should be observed in movement time 131 
series of precision-aiming performance, as the phenomenon is claimed to be 132 
universal. Second, measured values of poor performance reflect less stable, less 133 
systematic coordination of perception and action. Third, instabilities contribute 134 
unsystematic perturbations to measured values. Fourth, unsystematic 135 
perturbations add random variation to the signal of 1/f scaling as white noise. 136 
Fifth, each participant’s time series should show reduced effects of random 137 
variation after practice, and more clear signals of 1/f scaling. 138 

By using small targets, relatively far apart, and requiring the use of the 139 
non-dominant hand we induce less stable, less systematic coordination of 140 
perception and action. Because these conditions induce relatively poor 141 
performance overall, they also allow plenty of room for improvement with 142 
practice. The assertion is that improvement comes about by compressing the 143 
available degrees of freedom. Unfortunately inducing very poor performance 144 
overall reduces the possibility of reliably estimating directly the active degrees 145 
of freedom.  146 

For instance, in the framework outlined by Mitra et al. (1998) we must 147 
expect to deal with the early phase of motor learning in which the system 148 
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discovers and establishes the relevant collective variable. As they explain, in this 149 
phase there may be competing collective variables and candidate subsystems at 150 
the level of the coordination pattern. In contrast, intermediate phases refine the 151 
interactions among subsystems that contribute to the victorious collective 152 
variable. Nevertheless, both early and intermediate phases of motor learning 153 
reduce active degrees of freedom, which we may discover indirectly in fractal, 154 
recurrence quantification, and sample entropy analyses.  155 

As participants improve performance of the precision aiming task, we 156 
predict clearer examples of 1/f scaling in the movement time series. The 157 
rationale is that in learning, the many degrees of freedom for movement, that is, 158 
the available possibilities for the body to move between targets in precision 159 
aiming, are reduced to promote more efficient and coordinated performance 160 
(Bernstein, 1967). Movement will not be organized randomly, a situation in 161 
which all (indeterminate) degrees of freedom would be available. And 162 
movements will not be overly persistent (as in the sine wave), since contextual 163 
constraints on the kinematics of forthcoming movements are always 164 
dynamically changing. Apparent 1/f scaling is situated on the hypothetical 165 
border between persistence and “random” (chaotic) variability, between order 166 
and disorder. So, clearer instances of 1/f scaling should be observed with 167 
decreasing available degrees of freedom, as performance more reliably gauges 168 
variation near the border between order and chaos. 169 

METHOD 170 
Participants 171 

The participants were fifteen undergraduate students who received 172 
course credit for participation. None suffered from any known motor 173 
impairment and all participants had normal or corrected to normal vision. All 174 
participants were right-handed as tested by the handedness subscale of the 175 
Lateral Preference Inventory (Coren, 1993).  176 

Materials 177 
 Movement coordinates were recorded using a WACOM digitizer tablet 178 

connected to a regular Pentium PC. The tablet samples at temporal rate of 179 
171Hz, with a spatial resolution of 1000 lines/cm. The input device was an 180 
inkless stylus used on a model sheet (A4) placed on top of the digitizer tablet. 181 
Kinematic records were converted into two dimensional coordinates using Oasis 182 
software (De Jong, Hulstijn, Kosterman, & Smits-Engelsman, 1996). Particip-183 
ants were seated on a height-adjustable chair in front of the digitizer tablet.  184 

Procedure 185 
In the present study, participants were invited to draw lines back and 186 

forth between two visual targets, as fast and as accurately as possible. The 187 
targets were presented on a printed sheet of paper, one at the left side of the 188 
paper and one at the right side. Participants were allowed to modify the distance 189 
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to the digitizer tablet and the digitizer’s orientation within a deviating range of 190 
30° from the central position. The target width was 0.4 cm and the distance 191 
between targets was 24 cm. Five blocks of 1100 trials were completed with the 192 
non-dominant hand, all separated by three-minute breaks. When the last trial in a 193 
block was reached, a tone signaled the end of the block.  194 

Analyses 195 
 Movement times between targets were treated as a time series. To 196 

quantify the temporal structure of the successive fluctuations, Spectral Analysis, 197 
Standardized Dispersion Analysis (SDA), and Detrended-Fluctuation Analysis 198 
(DFA) were conducted. To further investigate those results we fit the 1/f + white 199 
noise model of Thornton and Gilden (2005), conducted a Recurrence 200 
Quantification Analysis (RQA), and tested for sample entropy (SampEn). All 201 
analyses were performed using Matlab scripts.  202 

Human time series data, like data from biological systems generally, 203 
are typically non-stationary noisy series containing extreme values. The tools 204 
available for fractal analyses must work around problems that come with such 205 
data. Known problems can be compensated for, which is why we used several 206 
methods together to estimate change across fractal statistics of practice blocks.  207 

Some methods are complementary in that the strengths of each 208 
compensate for the weaknesses of the others. For instance, spectral analysis, 209 
while robust in many respects, requires extensive preprocessing of the signal and 210 
extreme observations can contaminate the outcome of the analysis (see Holden, 211 
2005; Press et. al, 1992). Nonetheless they give a clear picture of 1/f scaling in 212 
the low frequency region of the spectral plot. Detrended fluctuation analysis is 213 
reliable and robust, and does not require the arbitrary setting of parameters, as 214 
does spectral analysis (Eke et al., 2002). Detrended fluctuation analysis can be 215 
applied to nonstationary signals and is not susceptible to most statistical artifacts 216 
or long-term trends, but it can falsely classify certain types of signals as fractal 217 
(Rangarajan & Ding, 2000). Standardized dispersion analysis is also highly 218 
reliable, but linear and quadratic trends may bias its output (we therefore remove 219 
both linear and quadratic trends for SDA). We insure reliable conclusions by 220 
using all three methods together.  221 

An important advantage of RQA, unlike the aforementioned methods, 222 
is that this technique does not impose constraints on data set size. RQA does not 223 
make assumptions regarding statistical distributions or stationarity of data either. 224 
The challenge of applying RQA measures specifically as a complementary tool 225 
for fractal analyses is addressed in this paper. 226 
Spectral Analysis  227 

Spectral analysis transforms data series from the time domain 228 
(milliseconds) into a frequency domain (Hz), through a Fast-Fourier 229 
Transformation. The procedure finds the best-fitting sum of sine and cosine 230 
waves in a data signal, and renders their amplitudes and frequencies on log-log 231 
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scales. The statistic of interest is the slope of the spectral portrait, which 232 
captures the relation between amplitudes and frequencies of variation in the data 233 
signal. A zero slope indicates non-random random structure in the signal, a slope 234 
of -1 indicates 1/f scaling. Spectral slopes as steep as -2 indicate fractional 235 
Brownian motion, the epitome of random walk processes.  236 

Spectral analysis requires some preprocessing of the raw data (Holden, 237 
2005). Extreme values were excluded (values below 50 ms and above 850 ms in 238 
the present case). Next, remaining outliers were removed if they lay outside a 3 239 
x SD criterion. Finally, linear trends were removed and the remaining data were 240 
truncated to 1024 trials. The number of estimated frequencies was 512, and the 241 
spectral slopes were calculated over the 25% of lowest frequencies. 242 
Standardized Dispersion Analysis (SDA) 243 

Dispersion analysis assesses the relative coherence of the patterns of 244 
fluctuations in 1/f scaling via the fractal-dimension statistic (see Holden, 2005). 245 
The Fractal Dimension (FD) is derived from estimating how variability changes 246 
with changing sample sizes. The dispersion analysis describes the changes in the 247 
variability of a measurement across a range of sample sizes (or measurement 248 
resolutions), in terms of a power-law scaling relation. In other words, the 249 
dispersion analysis determines a scaling relation between sample size and 250 
sample variability. This relation is estimated in the slope of a regression line 251 
across successive estimates of how variability changes with sample size, in this 252 
case across six estimates. An FD of 1.5 indicates a random data series, whereas 253 
values approaching 1.20 indicate 1/f scaling.  254 
Detrended Fluctuation Analysis (DFA) 255 

Detrended-fluctuation analysis (Peng et al., 1993) represents a relation 256 
between window sizes of data and the mean standard-deviations of the 257 
windowed data. First, the time series is subdivided into non-overlapping bins of 258 
equal length, and in each bin, the local trend -the locally best-fit line- is 259 
subtracted. Next, the root-mean-square of the locally detrended and binned 260 
timeseries is computed for windows of the same length. The process is repeated 261 
over increasing window sizes out to the limits of the finite data set. In the 262 
present study, DFA was performed on window sizes ranging between 4 and 263 
1024. When the average fluctuation is plotted over the increasing window sizes 264 
on log-log scales, the slope represents the 1/f scaling exponent. A resulting 265 
scaling exponent equal to 0.5 would correspond to white noise. If the scaling 266 
exponent exceeds 0.5, the series has long range persistent correlations. In the 267 
case of a scaling exponent equal to 1, the sequence is scaled exactly as 1/f.  268 
The 1/f + White Noise Model 269 

The model proposed by Thornton and Gilden (2005) assigns data series 270 
the likelihood they originate from a fractal as opposed to Auto-Regressive 271 
Moving-Average (ARMA) process (cf. Wagenmakers, Farrell, & Ratcliff, 2004). 272 
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This likelihood is based upon the comparison of a data set against model fitting 273 
parameters for whitened fractal noise (a mixture of 1/f scaling and Gaussian 274 
noise) as well as ARMA processes. These fitting parameters are given in 275 
separate reference libraries based on the 800 sampling distributions generated by 276 
the two candidate processes. The libraries encapsulate a reasonably complete 277 
range of spectral shapes that may be observed in either of the models. Based on 278 
maximum likelihood, the libraries are used to find the most likely source of an 279 
input data spectrum. Through this procedure, the classifier is able to decide 280 
whether a given data set is more consistent with a fractal or an ARMA 281 
interpretation. When this spectral classification framework favors a fractal 282 
interpretation, a 1/f + Gaussian noise model is tested. An advantage of this 283 
technique is that no prior assumptions are made concerning the nature of the 284 
data. In the present case, the 1/f + Gaussian noise model was generally preferred, 285 
and thus constitutes another test to determine changes due to practice. In 286 
particular, this model returns a specific test of whether white noise amplitude 287 
decreases due to practice.  288 
Recurrence Quantification Analysis (RQA) 289 

RQA combines recurrence plots (Eckmann, Kamphorst, & Ruelle, 290 
1987), that is, the visualization of trajectories in phase space, with the objective 291 
quantification of (nonlinear) system properties. That is, time series are delayed 292 
with a certain lag (Takens, 1981) and embedded in a phase space with an 293 
appropriate dimensionality. Subsequently, complexity measures are quantified 294 
in that reconstructed phase space. This technique reveals subtle time-295 
evolutionary behavior of complex systems by quantifying system characteristics 296 
in reconstructed phase-space.  297 

RQA measures include recurrence (the percentage of data points that 298 
share a common area in phase space, dependent on a defined radius - the mean 299 
Euclidean distance separating data points in reconstructed phase space), 300 
determinism (the percentage of recurrent points that constitute line segments -301 
recurrent patterns- parallel to the diagonal identity line in a recurrence plot), 302 
entropy (the Shannon entropy of the distribution of deterministic line segments. 303 
The index is one way to quantify complexity of a deterministic structure), 304 
maxline (a measure of dynamical stability inversely proportional to the largest 305 
positive Lyapunov exponent, hence, attractor strength), and trend (the degree of 306 
nonstationarity). Detailed tutorials that include a careful examination of these 307 
parameters are (Marwan, Romano, Thiel, & Kurths, 2007; Riley, 308 
Balasubramaniam, & Turvey, 1999; Riley & Van Orden, 2005).  309 

Parameters that affect the outcome of RQA measures, and thus need to 310 
be chosen carefully, are time lag or delay, and the embedding dimension. Here a 311 
delay of 3 was combined with an embedding dimension of 4. These choices 312 
were based on the first local minimum of the Average Mutual Information 313 
function (Fraser & Swinney, 1986) for the delay, and global False Nearest 314 
Neighbors (Kennel, Brown, & Abarbanel, 1992) for the embedding dimension. 315 
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Another parameter is the minimal line length for identifying deterministic 316 
segments; here it was set to two points. 317 

We applied a different RQA strategy than the one that typically is 318 
chosen. Traditionally, recurrence is identified by choosing first a fixed radius. 319 
We reversed that order, so that our a priori choice was the level of recurrence, 320 
not the radius. Instead of a fixed radius we used a fixed amount of recurrence 321 
(5%), and the resultant radius, for each participant, was the dependent variable. 322 
When a smaller radius is observed for the same level of recurrence, it implies 323 
that the absolute level of recurrence is higher.  324 
Sample Entropy 325 

Entropy measures have previously been used as an indirect gauge of the 326 
dynamical degrees-of-freedom in complex data signals (e.g. Newell, Broderick, 327 
Deutsch, & Slifkin, 2003; Slifkin & Newell, 1999). To compare the direction of 328 
change of the various indices of dynamical degrees-of-freedom described in the 329 
previous sections, sample entropy was computed (Richman & Moorman, 2000).  330 

The Sample Entropy (SampEn) index indicates whether the 331 
dimensionality of the reconstructed attractor is increasing or decreasing. 332 
SampEn(m,r,N) is precisely the negative natural logarithm of the conditional 333 
probability that a dataset of length N, having repeated itself within a tolerance r 334 
for m points, will also repeat itself for m + 1 points, without allowing self-335 
matches. SampEn measures generally range between 0 and 2; more random data 336 
sets produce a higher entropy value, and more regular data are reflected by 337 
lower values.  338 

In the present SampEn analysis, we used parameter values of m = 3 and 339 
filter width of r = 0.1, where m is the length of compared runs of data and r is 340 
the proportion of the standard deviation used to filter the data; a detailed outline 341 
of the procedures for calculating SampleEn and determining its parameter values 342 
can be found in Richman and Moorman (2000). Sample entropy has the 343 
advantage over approximate entropy because it is less biased (i.e., SampEn does 344 
not include self-matches), and more robust over a range of input parameters 345 
(Lake, Richman, Griffin, & Moorman, 2002). The sample entropy, which is 346 
computed over the sequential values of the time series, should not be confused 347 
with the entropy in RQA, which is measured over the distribution of 348 
deterministic line segments in the recurrence plot. 349 

RESULTS 350 
The discussion of the results starts with a summary of the traditional 351 

performance measures. These analyses pertain to successive movement times, 352 
their standard deviations, accuracy levels, and their changes with practice. Then, 353 
the results from the spectral and fractal analyses are presented, followed by the 354 
outcome of fitting the 1/f + white noise model. Then, the RQA outcomes are 355 
presented.  356 
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Performance measures 357 
The overall mean movement time was 590 ms (± 80 ms). Not 358 

surprisingly, a repeated measures ANOVA across the 5 blocks of practice found 359 
decreasing mean movement times and standard deviations with practice (block: 360 
1 (625 ms, SD = .09) vs. 2 (620 ms, SD = .08) vs. 3 (606 ms, SD = .08) vs. 4 361 
(556 ms, SD = .08) vs. 5 (542 ms, SD = .07), very near the threshold for 362 
statistical significance (F(1, 14) = 4.51, p < .06 and F(1, 14) = 2.83, p < .06 363 
respectively); see Fig. 2a. To further investigate these changes, difference 364 
contrasts were computed. For the movement times, the change between block 3 365 
and block 4 was statistically significant, F(1,14) = 6.74, p < .05. The movement 366 
times decreased even more in block 5, F(1,14) = 5.70, p < .05. The difference 367 
contrasts between the other blocks were not statistically significant.  368 

Each practice block was divided in four non-overlapping epochs of 256 369 
data points to investigate possible changes in movement times within each block. 370 
Within the first and the fourth block, movement times decreased significantly 371 
between subsequent epochs, F(3,42) = 6.74, p < .01 and F(3,42) = 5.95, p < .01 372 
respectively. Throughout the other blocks, the repeated measures ANOVAs 373 
were not significant. However, a careful examination of the data revealed that 374 
the difference contrasts between epoch 1 and 2 showed an initial drop in 375 
movement time (block 2: F(1,14) = 4.82, p < .05; block 3: F(1,14) = 15.11, p 376 
< .01; block 5: F(1,14) = 5.95, p < .05), after which movement times stabilized 377 
for the remainder of that block. Practice block did not reliably affect accuracy 378 
(block: 1 (15.37%, SD = 10.25) vs. 2 (14.40%, SD = 10.26) vs. 3 (15.23%, SD = 379 
8.11) vs. 4 (13.93%, SD = 7.77) vs. 5 (12.13%, SD = 9.3), all Fs < 1).  380 

Spectral and Fractal Analyses 381 
The outcomes of spectral analyses, standardized dispersion analyses 382 

(SDA), and detrended fluctuation analyses (DFA), were subjected to repeated 383 
measures ANOVAs, to test for changes in scaling across blocks of practice. The 384 
spectral analyses all yielded slopes consistent with 1/f scaling, with average 385 
scaling exponents less than or equal to negative one. The main effect of block 386 
was significant (F (4, 56) = 4.65, p < .01), revealing a significant linear trend 387 
with decreasing scaling exponents across practice blocks (the spectral slopes 388 
become steeper with practice), F(1, 14) = 11.07, p < .01. This pattern was 389 
confirmed by the SDA (F (4, 56) = 3.55, p < .01), revealing a significant linear 390 
trend with decreasing fractal dimensions, F(1, 14) = 9.74, p < .01. Likewise the 391 
DFA revealed clearer examples of 1/f scaling with practice; over blocks, F (4, 392 
56) = 2.63, p < .05, and a significant linear trend with increasing scaling 393 
exponents, F(1, 14) = 4.48, p < .05.  394 

To further investigate these effects, the mean difference contrasts 395 
between blocks were examined. Only the third and the fourth practice blocks 396 
differed reliably. For the spectral analysis, SDA and DFA, F(1, 14) = 13.39, p 397 
< .01 ; F(1, 14) = 10.35, p < .01; and F(1, 14) = 6.73, p < .05, respectively. 398 
Other blocks did not differ reliably from temporally adjacent blocks. The 399 



 
 
 
 
 
 
 
 

NDPLS, 13(1), 1/f Scaling in Motor Coordination                 85 

changes in the outcome of the spectral analysis, SDA and DFA are illustrated in 400 
Figs. 2b, 2c and 2d respectively. Over blocks, the temporal variation in 401 
movement times became more clearly patterned as a 1/f signal. 402 
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Fig. 2. Changes in (a) movement time (b) spectral scaling exponent (c) fractal 406 
dimension, (d) DFA scaling exponent, (e) scaling exponent α and (f) error term β 407 
from Thornton & Gilden’s (2005) fBmW model across blocks of practice.  408 
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To further investigate changes in scaling, within-block changes were 409 
estimated by subdividing the movement time series in four non-overlapping 410 
epochs of 256 trials. Delignières et al. (2006) showed that for simulated data 411 
series, reasonably reliable scaling estimates can be derived from a data series 412 
containing 256 trials. However, scaling outcomes over such short time frames 413 
are more variable than outcomes over longer time frames. Within block 1, block 414 
4 and block 5, none of the scaling estimates changed reliably, all F’s < 1. In 415 
blocks 2 and 3, the different scaling estimates did not converge, likely because 416 
short time series are bound to reveal more variable indices. Within block 2, only 417 
SDA showed higher FD’s (becoming less like ideal 1/f scaling) across epochs, 418 
F(3,42) = 3.50, p < .05. Throughout block 3, spectral exponents did increase 419 
(becoming more like ideal 1/f scaling) and the DFA exponents decreased (also 420 
becoming more like ideal 1/f scaling), F(3,42) = 3.15, p < .05 and F(3,42) = 9.43, 421 
p < .001 respectively.  422 

The 1/f + White Noise Model 423 
The spectral classification framework assigned a larger likelihood to the 424 

1/f + white noise model for 82.7 % of the time series as opposed to an ARMA-425 
model, t(148) = -3.50, p < .01. Thus, changes due to practice were only 426 
examined using fits to the 1/f + white noise model. Time series were first 427 
standardized and then transformed into an 8-point composite spectrum, averaged 428 
over participants, a procedure described by Thornton and Gilden (2005). The 429 
application of Thornton and Gilden’s model showed a direction of change that 430 
was consistent with the other fractal scaling estimates. Although the spectral 431 
exponents suggested more pronounced fractal scaling after more blocks of 432 
practice, that increase was not statistically significant, F(4, 56) = 1.363, p = .25. 433 
The random error term, however, did reliably decrease with blocks of practice, 434 
F(4,56) = 2.99, p < .05, as a statistically significant linear trend over practice 435 
blocks, F(1,14) = 5.25, p < .05. This outcome is relatively direct support that 436 
random sources of variation decrease with practice, better revealing a 1/f signal. 437 
These outcomes are illustrated in Figs. 2e and 2f.  438 

Recurrence Quantification Analysis 439 
RQA was performed to examine time-evolutionary properties of the 440 

time series that cannot be detected using scaling measures. Univariate repeated 441 
measures ANOVAs did not reveal significant changes in radius with practice for 442 
the intact data (F (4,56) = 1.60, p < .19). (However, the difference contrast 443 
between block 3 and 4 was close to statistical significance, F(1,14) = 3.74, p 444 
< .08). Also trend did not change over practice blocks, F < 1, indicating that data 445 
became neither more nor less stationary across blocks. All other RQA measures 446 
reliably increased across the blocks of practice (F(4, 56) = 5.11, p < .05 for 447 
determinism; F(4, 56) = 75.36, p < .05 for entropy; F(4, 56) = 4.54, p < .05 for 448 
meanline, and F(4, 56) = 2.71, p < .05 for maxline). Just as for the fractal 449 
measures, these differences occur specifically between block 3 and block 4.  450 
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Between blocks 3 and 4 difference contrasts revealed that determinism 451 
increases, F(1, 14) = 9.71, p < .01, as does entropy F(1, 14) = 10.77, p < .05, the 452 
average strength of attractor dynamics indicated by meanline F(1, 14) = 7.90, p 453 
< .05, and strength of the strongest attractor indicated by maxline F(1, 14) = 454 
5.10, p < .05. No other contrasts were statistically significant. However the 455 
decrease in RQA measures was close to the threshold for statistical significance 456 
for both entropy F(1,14) = 4.0 , p = .07 and maxline F(1,14) = 4.12 , p = .06. In 457 
addition, a quadratic function gives a significant fit across blocks 3, 4, and 5, for 458 
determinism F(1, 14) = 5.25, p < .05, entropy F(1,14) = 6.13, p < .05, and 459 
maxline F(1,14) = 7.79, p < .05, and although meanline did not reach threshold 460 
for significance it is close and in the right configuration. We did not anticipate 461 
the overall downturn in RQA measures between blocks 4 and 5. The changing 462 
RQA values are shown in Figs. 3a-3e. 463 

Most RQA measures change in the same direction across the first four 464 
blocks of trials and then reverse direction in the fifth block. By comparison, 465 
movement times decrease in the fourth block, and decrease even more in the 466 
subsequent fifth block. These changes are not a function of a speed-accuracy 467 
trade-off; the level of accuracy did not change. Perhaps the reversal of the global 468 
pattern of change in the last block is due to fatigue. While we cannot know this 469 
with certainty, it would contradict the idea that 1/f scaling itself is a fatigue 470 
phenomenon (e.g. Wagenmakers et al., 2004), and is worth pursuing in future 471 
work (with a sixth block for example), but we will not discuss this finding 472 
further without a replication.  473 

To investigate possible within-block changes, data series were divided 474 
in four non-overlapping epochs of 256. RQA is a nonlinear tool, sensitive to 475 
details of the full time series analyzed, and smaller epochs do not necessarily 476 
combine to “equal” the outcome over an entire block. Within Block 1, 477 
determinism, entropy, meanline and maxline dropped, and trend became less 478 
negative: (F(3,42) = 4.26, p < .05; F(3,42) = 5.12, p < .01 ; F(3,42) = 4.22, p 479 
< .05; F(3,42) = 3.43, p < .05; F(3,42) = 6.57, p < .01, respectively). The drop 480 
occurred especially between epoch 1 and 2 (an apparent start up transient, 481 
perhaps), the difference contrasts were F(1,14) = 8.92, p < .05; F(1,14) = 12.16, 482 
p < .01; F(1,14) = 4.22, p < .05; F(1,14) = 12.56, p < .01; F(1,14) = 7.39, p < .05, 483 
respectively. Otherwise, only one RQA parameter changed reliably; in block 3 484 
trend changed to indicate that the data series became more stationary, F(3,42) = 485 
3.15, p < .05.  486 

Sample Entropy 487 
The SampEn measures, like the RQA measures, effectively confirmed 488 

the anticipated direction of change in dynamical degrees-of-freedom (see Fig. 489 
3f). Over the five practice blocks, a repeated measures ANOVA revealed 490 
decreasing SampEn, F(4,56) = 3.87, p < .05. Also a linear trend was observed 491 
consistent with previous observations, F(1,14) = 5.23, p < .05. Within each 492 
block, changes in SampEn were investigated by dividing the  data  series  in  493 
four non-overlapping epochs of 256 data points. However, no significant within- 494 
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Fig. 3. Changes in (a) radius, (b) the percentage of determinism, (c) entropy, (d) 500 
meanline, (e) maxline and (f) sample entropy across blocks of practice.  501 
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block changes were observed. Also, none of the difference contrasts between 502 
epochs were statistically significant in any of the practice blocks. Thus, SampEn 503 
gradually decreased across, but not within blocks. 504 

DISCUSSION 505 
The primary finding of the present experiment is that movement time 506 

variability shows more consistent time-dependent properties in more practiced 507 
precision-aiming performance. Here, increasing skill with practice equals faster 508 
movement times, both within and between training blocks, without trading-off 509 
accuracy, plus increasingly clear 1/f scaling that also tracks the improving speed 510 
of performance. Changes in 1/f scaling exponents (and other fractal statistics) 511 
reliably track changes in the early phase of motor learning.  512 

 Our original prediction was thus confirmed. Practice better constrains 513 
and coordinates interaction-dominant dynamics, to reduce degrees of freedom, 514 
and so the structure of variation in movement times shows clearer signals of 1/f 515 
scaling. After practice movement dynamics became less random and more 516 
patterned. In reconstructed phase space, the attractive region became more 517 
deterministic and yielded a more complex structure (as indicated by higher 518 
entropy). Other recurrence quantification (RQA) measures indicated increasing 519 
system stability. And, after practice, a smaller radius captured the same 520 
percentage of recurrent attractor states (see Fig. 3a), which, while not 521 
statistically significant, replicates the pattern of the other variables, and suggests 522 
that movement trajectories evolve in a more confined region through their 523 
phase-space. Additional support for this claim comes from sample entropy 524 
(SampEn), which drops with practice indicating a lower-dimensional 525 
organization of coordinative structure. Thus practice adds constraints, which 526 
make the task more feasible, or less difficult in a meaningful sense. 527 

The difficulty of performing a motor task in a specific context generally 528 
is often estimated by self-report or physiological measures. Alternatively, levels 529 
of task difficulty are determined a priori based on reasonable assumptions about 530 
difficulty that may or may not be true. We assumed for example that task 531 
difficulty decreases with practice, and we then tracked practice effects using 532 
linear and nonlinear tools in tandem, which revealed details of motor dynamics 533 
that converge in a consistent story about practice effects. Namely, intrinsic 534 
constraints acquired with practice change coordinative structures to reduce 535 
degrees of freedom. If this is true, then the relative presence of 1/f scaling may 536 
constitute a gauge for motor skill in closed motor tasks, and even difficulty or 537 
workload in human performance more generally. The latter possibility would 538 
conceive difficulty and workload as unsystematic perturbations on within-trial 539 
motor coordination, and thereby random perturbations of 1/f scaling in repeated 540 
measurements. 541 

The presence of 1/f scaling, in general, contradicts any view of motor 542 
coordination that regards variation in movement as uncorrelated noise imposed 543 
on a motor signal. Thus, the presence of 1/f scaling poses challenges to many 544 
conventional models of motor control (Torre, Delignières, & Lemoine, 2007). 545 
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Specifically, for the present data, Fitts’ (1954) original model, and more recent 546 
nonlinear models of precision aiming in the Fitts’ task, have focused on central 547 
tendency, not time-evolutionary properties (e.g. Mottet & Bootsma, 1999; Flach, 548 
Guisinger, & Robison, 1996). The present results also contradict conjecture that 549 
the relative strength of 1/f scaling increases with increases in task difficulty 550 
(Chen, Ding, & Kelso, 2001; but cf. Van Orden et al., 2003) and the conjecture 551 
that the effects of task difficulty or skill are discarded per se by focusing on 552 
trial-by-trial variability (Wagenmakers et al., 2005).  553 

In this regard, point to point movement times of each participant in 554 
every block of trials of the present precision-aiming task fluctuated in the fractal 555 
pattern of 1/f scaling. This outcome replicates previous wide-ranging 556 
demonstrations that motor variability entails fractal 1/f scaling. Structure and 557 
variation coexist in the time-evolutionary properties of motor behavior. This 558 
outcome reinforces the crucial empirical analytic point that one must include 559 
estimates of time-evolving structure of motor variability to derive an accurate 560 
picture of motor behavior (Liu, Mayer-Kress, & Newell, 2006; Riley & Turvey, 561 
2002; Slifkin & Newell, 1999; Treffner & Kelso, 1999).  562 

All these outcomes support the perspective taken here that 1/f scaling in 563 
motor (and cognitive) activity emerges from interaction-dominant dynamics. 564 
Reciprocally interactive processes interlink across time scales to change each 565 
other’s dynamics and self-organize task performance (Van Orden et al., 2003). It 566 
is known that 1/f scaling is most clearly seen in measurements when external 567 
constraints are held constant, or changes are minimized (Gilden, 2001; Kello, 568 
Anderson, Holden, & Van Orden, in press). These are the conditions of the 569 
precision aiming task, which again reliably produced 1/f scaling. Yet under-570 
standing 1/f scaling as a reflection of self-organization is at odds with main-571 
stream psychological science. The central issue in that argument is the logical 572 
possibility that 1/f scaling can appear as an exclusive consequence of ordinary 573 
linear dynamics acting in a somewhat extraordinary fashion. As we explain next, 574 
the outcome of the present experiment speaks to that argument as well. 575 

Several independent sine waves plus random noise can be fitted to the 576 
gross pattern of a 1/f signal (Granger, 1980; Pressing, 1999; Pressing & Jolley-577 
Rogers, 1997; Wagenmakers et al. 2004, 2005; Ward, 2002), as any pattern of 578 
variation can be linearly modeled after the fact (Beran, 1994). However, such a 579 
model must posit a special align parameter to integrate the independent 580 
processes in the strict form of the scaling relation, or else must allow a primary 581 
role for coincidence.  582 

The present results further complicate such an account because they 583 
demonstrate coordinated changes in the exact form of the scaling relation – 584 
practice converges across blocks on clearer patterns of 1/f scaling. Scaling 585 
exponents that estimate the overall structure of variation in movement times 586 
change with practice in a systematic fashion. In the linear framework, scaling 587 
exponents depend largely on the frequency and amplitude of variations in 588 
specific component processes. Thus, to account for systematic change in the 589 
exponent of 1/f scaling, linear models must add to their alignment parameter a 590 
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capacity to moderate or control components to change together, to insure that 591 
their changes relative to each other maintain the 1/f relation between amplitude 592 
and frequency.  593 

This extra capacity of a controller-component would join other ad hoc 594 
changes already implicated. For example, a linear model must introduce new 595 
components each time a longer data set is collected (Van Orden et al., 2005), 596 
and new components must be added when additional measurements are taken. 597 
Additional measurements of the same repeated performance yield additional 598 
uncorrelated streams of 1/f scaling (Kello et al., 2007; Kello et al., in press). In 599 
other words, 1/f scaling behaves like we expect a fractal phenomenon to behave; 600 
fractal time permeates collected data to their full extent. All these facts are 601 
unexpected from linear models (Bak, 1996; Bassingthwaighte, Liebovitch, & 602 
West, 1994; Liebovitch & Todorov, 2000; Thornton & Gilden, 2005).  603 

The interpretation of the presented results in terms of interaction-604 
dominant dynamics generates further insight into the nature of control and 605 
coordination in perception and action. As constraints accrue with practice, new 606 
lower-dimensional modes of intrinsic dynamics arise, which reduce the intrinsic 607 
degrees-of-freedom, Scaling exponents move closer to the -1 scaling exponent 608 
of hypothetical 1/f scaling because practice is a means to add constraints in 609 
behavior and reduce degrees of freedom for behavior, and thereby reduce 610 
across-trial and within-trial sources of random variation in measures of behavior.  611 

Skilled and unskilled movements emerge to satisfy the constraints, 612 
extrinsic and intrinsic, of the task at hand. Movements are not solutions to a 613 
mechanical equation. Significant changes in 1/f scaling for identical task 614 
conditions suggest dynamics modulated by the coupling of task and participant, 615 
not just by properties tasks. Parallel changes between fractal, complexity, and 616 
traditional performance measures motivate this claim and previous findings also 617 
support this conclusion (Pressing & Jolley-Rogers, 1997). Thus fractal dynamics 618 
are informative about task complexity, but complexity must take into account 619 
both task and participant.  620 

This brings us to a final question. Why 1/f scaling? Why do added 621 
constraints, that better coordinate the dynamics of brain and body with the 622 
dynamics of task requirements, yield scaling exponents closer to the ideal form 623 
of 1/f scaling? 1/f scaling is the idealized pattern of interaction-dominant 624 
dynamics that separates chaotic variation from rigid order. 1/f scaling is also the 625 
idealized pattern of interaction-dominant dynamics that never strays far from 626 
choice points, or critical points. This insures flexibility to adjust kinematics even 627 
as behavior is realized and even to produce entirely novel kinematics when 628 
necessary.  629 

Flexibility also equals vulnerability with respect to inevitable and 630 
ubiquitous perturbations of measured behavior, of all sorts. Such perturbations 631 
contribute random variation, which will whiten the signal of 1/f scaling. 632 
Interaction-dominant dynamics perturbed to be less near critical points and more 633 
toward chaotic dynamics will appear empirically as a whitened 1/f signal. If 634 
these hypotheses are significant, then 1/f scaling-exponent will soon be widely 635 
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recognized as an index or order parameter of coordination in human 636 
performance.  637 

ACKNOWLEDGMENT 638 
We acknowledge funding support from NSF BCS-0642718 and NSF 639 

DHB-0728743, Guy Van Orden, Principal Investigator. Maarten L. Wijnants 640 
wrote this article while he was affiliated with the Department of Psychology, 641 
University of Cincinnati, Ohio. 642 

REFERENCES 643 
Bak, P. (1996). How Nature Works. New York: Copernicus Springer-Verlag. 644 
Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (1994). Fractal Physiology. 645 

New York: Oxford University Press. 646 
Beran, J. (1994). Statistics for long-memory processes. New York: Chapman & Hall. 647 
Bernstein, N. (1967). The coordination and regulation of movements. London: Pergamon. 648 
Chen, Y., Ding, M., & Kelso, J. A. S. (2001). Origins of time errors in human 649 

sensorimotor coordination. Journal of Motor Behavior, 33, 3–8. 650 
Coren, S. (1993). The lateral preference inventory for the measurement of handedness, 651 

footedness, eyedness, and earedness: Norms for young adults. Bulletin of the 652 
Psychonomic Society, 31, 1–3. 653 

de Jong, W. P., Hulstijn, W., Kosterman, B. J. M., & Smits-Engelsman, B. C. M. (1996). 654 
Oasis software and its applications in experimental handwriting research. In M. 655 
L. Simner, C. G. Leedham, & A. J. W. M. Thomassen (Eds.), Handwriting and 656 
drawing research, basic and applied issues (pp. 429–440). Amsterdam: IOS 657 
Press. 658 

Delignières, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., & Ninot, G. (2006). 659 
Fractal analyses for ‘short’ time series: a re-assessment of classical methods. 660 
Journal of Mathematical Psychology, 50, 525–544 661 

Delignières, D., Torre, K., & Lemoine, L. (2005) Methodological issues in the 662 
application of monofractal analyses in psychological and behavioral research. 663 
Nonlinear Dynamics, Psychology, and Life Science, 9, 435-462. 664 

Eckmann, J. P., Kamphorst, S.O., & Ruelle, D. (1987). Recurrence plots of dynamical 665 
systems. Europhysics Letters, 5, 973–977. 666 

Eke, A., Hermán, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of 667 
complexity in temporal physiological signals. Physiological Measurement, 23, 668 
1–38. 669 

Fitts, P. M. (1954). The information capacity of the human motor system in controlling 670 
the amplitude of movement. Journal of Experimental Psychology, 47, 381–391. 671 

Flach, J. M., Guisinger, M. A., & Robison A. B. (1996). Fitts's Law: Nonlinear Dynamics 672 
and Positive Entropy. Ecological Psychology, 8, 281-325 673 

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors 674 
from mutual information. Physical Review A, 33, 1134– 1140. 675 

Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108, 33-56. 676 
Gilden, D. L., Thornton, T. L., & Mallon, M. W. (1995). 1/f noise in human cognition. 677 

Science, 267, 1837-1839. 678 
Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic 679 

models. Journal of Econometrics, 14, 227–238. 680 



 
 
 
 
 
 
 
 

NDPLS, 13(1), 1/f Scaling in Motor Coordination                 93 

Holden, J. G. (2005). Gauging the fractal dimension of response times from cognitive 681 
tasks. In M. A. Riley & G. C. Van Orden (Eds.), Contemporary nonlinear 682 
methods for behavioral scientists: A webbook tutorial (pp. 267-318). Retrieved 683 
March 1, 2005 from http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp  684 

Kello, C. T., Anderson, G. G., Holden, J. G., & Van Orden, G. C. (in press). The 685 
pervasiveness of 1/f scaling in speech reflects the metastable basis of condition. 686 
Cognitive Science. 687 

Kello, C. T., Beltz, B. C., Holden, J. G., & Van Orden, G. C. (2007). The emergent 688 
coordination of cognitive function. Journal of Experimental Psychology: 689 
General, 136, 551-568. 690 

Kennel, M. B., Brown, R., & Abarbanel H. D. I. (1992). Determining embedding 691 
dimension for phase-space reconstruction using a geometrical construction. 692 
Physical Review A, 45, 3403–3411. 693 

Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy 694 
analysis of neonatal heart rate variability. American Journal of Physiology: 695 
Regulatory, Integrative and Comparative Physiology, 283, 789-797. 696 

Liebovitch L. S., & Todorov A. T. (2000). What causes ion channel proteins to open and 697 
close? In P. Arhem, C. Blomberg, & H. Liljenstrom (Eds.), Disorder versus 698 
order in brain function (pp. 83-106), River Edge, NJ: World Scientific. 699 

Liu, T. H., Mayer-Kress, G., & Newell, K. M. (2006). Qualitative and quantitative 700 
change in the dynamics of motor learning. Journal of Experimental Psychology: 701 
Human Perception and Performance, 32, 380-393. 702 

Mandelbrot, B. (1982). The fractal geometry of nature. New York: Freeman. 703 
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence in complex 704 

systems. Physics Reports, 438, 237-329. 705 
Mitra, S., Amazeen, P. G., & Turvey, M. T. (1998). Intermediate motor learning as 706 

decreasing active (dynamical) degrees of freedom. Human Movement Science, 707 
17, 17-65. 708 

Mottet, D., & Bootsma, R. J. (1999). The dynamics of goal-directed rhythmical aiming. 709 
Biological Cybernetics, 80, 235–245. 710 

Newell, K. M., Broderick, M. P., Deutsch, K. M., & Slifkin, A. B. (2003).Task goals and 711 
change in dynamical degrees of freedom with motor learning. Journal of 712 
Experimental Psychology: Human Perception and Performance, 29, 379-387. 713 

Peng, C. K., Mietus, J., Hausdorff, J. M., Havlin, S., Stanley, H. E., & Goldberger, A. L. 714 
(1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. 715 
Physical Review Letters, 70, 1343–1346. 716 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical 717 
recipes in C (2nd ed.). Cambridge, UK: Cambridge University Press. 718 

Pressing, J. (1999). Sources for 1/f noise effects in human cognition and performance. 719 
Proceedings of the 4th Conference of the Australasian Cognitive Science 720 
Society, Newcastle NSW, Australia: University of Newcastle. 721 

Pressing, J., & Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill. 722 
Biological Cybernetics, 76, 339-347. 723 

Rangarajan, G., & Ding, M. (2000). Integrated approach to the assessment of long range 724 
correlation in time series data, Physical Review, 61, 4991-5001. 725 

Richman, J. S., & Moorman, J. R. (2000). Physiological time series analysis using 726 
approximate entropy and sample entropy. American Journal of Physiology: 727 
Heart and Circulatory Physiology, 278, 2039-2049. 728 



 
 
 
 
 
 
 
 
94                                      NDPLS, 13(1), Wijnants et al. 

Riley, M. A., Balasubramaniam R., & Turvey M.T. (1999). Recurrence quantification 729 
analysis of postural fluctuations. Gait & Posture, 11, 12-24. 730 

Riley, M. A., & Turvey, M. T. (2002). Variability and determinism in elementary 731 
behaviors. Journal of Motor Behavior, 34, 99-125. 732 

Riley, M. A., & Van Orden, G. C. (2005). Tutorials in contemporary nonlinear methods 733 
for the behavioral sciences. Retrieved March 1, 2005, from 734 
http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp 735 

Slifkin, A. B., & Newell, K. M. (1999). Noise, information transmission, and force 736 
variability. Journal of Experimental Psychology: Human Perception & 737 
Performance, 25, 837–851. 738 

Takens, F. (1981). Detecting strange attractors in fluid turbulence. In D. A. Rand & L. S. 739 
Young (Eds.), Dynamic Systems and Turbulence (pp. 366-381). New York: 740 
Springer. 741 

Torre, K., Delignières, D., & Lemoine, L. (2007) 1/f fluctuations in bimanual 742 
coordination: An additional challenge for modeling. Experimental Brain 743 
Research, 183, 225–234. 744 

Treffner, P. J., & Kelso, J.A.S. (1999). Dynamic encounters: Long memory during 745 
functional stabilization. Ecological Psychology, 11, 103-137. 746 

Turvey, M. T. (1990). Coordination. American Psychologist, 45, 938-953. 747 
Van Orden, G. C., & Holden, J. G. (2002). Intentional contents and self-control. 748 

Ecological Psychology, 14, 87-109. 749 
Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive 750 

performance. Journal of Experimental Psychology: General, 132, 331-350. 751 
Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2005). Human cognition and 1/f 752 

scaling. Journal of Experimental Psychology: General, 134, 117-123. 753 
Van Orden, G. C., Kello, C. T., & Holden, J. G. (in press). Situated behavior and the 754 

place of measurement in psychological theory. Ecological Psychology. 755 
Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/f 756 

noise in human cognition. Psychonomic Bulletin & Review, 11, 579–615. 757 
Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2005). Human cognition and a pile of 758 

sand: A discussion on serial correlations and self-organized criticality. Journal 759 
of Experimental Psychology: General, 135, 108-116. 760 

Ward, L. M. (2002). Dynamical cognitive science. Cambridge: MIT Press. 761 


